Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844817

RESUMEN

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

3.
Oncotarget ; 8(49): 84671-84684, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156675

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with poor prognosis. Cancer cells are characterized by a specific redox environment that adjusts metabolism to its specific needs and allows the tumor to grow and metastasize. As a consequence, cancer cells and especially GBM cells suffer from elevated oxidative pressure which requires antioxidant-defense and other sanitation enzymes to be upregulated. MTH1, which degrades oxidized nucleotides, is one of these defense enzymes and represents a promising cancer target. We found MTH1 expression levels elevated and correlated with GBM aggressiveness and discovered that siRNA knock-down or inhibition of MTH1 with small molecules efficiently reduced viability of patient-derived GBM cultures. The effect of MTH1 loss on GBM viability was likely mediated through incorporation of oxidized nucleotides and subsequent DNA damage. We revealed that MTH1 inhibition targets GBM independent of aggressiveness as well as potently kills putative GBM stem cells in vitro. We used an orthotopic zebrafish model to confirm our results in vivo and light-sheet microscopy to follow the effect of MTH1 inhibition in GBM in real time. In conclusion, MTH1 represents a promising target for GBM therapy and MTH1 inhibitors may also be effective in patients that suffer from recurring disease.

4.
Cancer Res ; 74(14): 3983-94, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24830720

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Invasividad Neoplásica , Neoplasias Basocelulares , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción AP-1/genética , Transcriptoma , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
5.
Proc Natl Acad Sci U S A ; 111(7): 2560-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550283

RESUMEN

The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a naturally occurring C-terminal fragment that accumulates in the cell nucleus. This fragment interacts with the N-terminal portion of HIF-1α spanning amino acid residues 1-390 but not with HIF-2α. In hypoxia this fragment facilitates the nuclear localization of HIF-1α, is recruited to HIF-1α target gene promoters, and enhances HIF-1α function, resulting in up-regulation of HIF-1α target gene expression in a hypoxia-dependent fashion. These results unravel an important mechanism that selectively regulates the nuclear accumulation and function of HIF-1α and potentiates angiogenesis and tumor progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/fisiología , Filaminas/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/genética , Animales , Inmunoprecipitación de Cromatina , Fluorescencia , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Inmunoprecipitación , Ratones , Ratones SCID , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
J Clin Invest ; 124(3): 1069-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487586

RESUMEN

Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport ß1 integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Miosinas/genética , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Femenino , Expresión Génica , Humanos , Integrinas/metabolismo , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , Mutación Missense , Miosinas/metabolismo , Invasividad Neoplásica , Trasplante de Neoplasias , Transporte de Proteínas , Seudópodos/metabolismo , Pez Cebra
7.
Nat Commun ; 4: 2129, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23831851

RESUMEN

Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-ß signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-ß and inactivation of the PDGF-ß signalling decreases integrin α1ß1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.


Asunto(s)
Carcinoma Pulmonar de Lewis/irrigación sanguínea , Fibrosarcoma/irrigación sanguínea , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/irrigación sanguínea , Neovascularización Patológica/genética , Pericitos/patología , Proteínas Proto-Oncogénicas c-sis/genética , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Becaplermina , Benzamidas/farmacología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/genética , Fibrosarcoma/inmunología , Perfilación de la Expresión Génica , Humanos , Mesilato de Imatinib , Integrina alfa1beta1/genética , Integrina alfa1beta1/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Ratones , Metástasis de la Neoplasia , Neovascularización Patológica/inducido químicamente , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Pericitos/efectos de los fármacos , Pericitos/inmunología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-sis/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-sis/inmunología , Pirimidinas/farmacología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Birth Defects Res C Embryo Today ; 93(2): 182-93, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21671357

RESUMEN

Most in vivo preclinical disease models are based on mouse and other mammalian systems. However, these rodent-based model systems have considerable limitations to recapitulate clinical situations in human patients. Zebrafish have been widely used to study embryonic development, behavior, tissue regeneration, and genetic defects. Additionally, zebrafish also provides an opportunity to screen chemical compounds that target a specific cell population for drug development. Owing to the availability of various genetically manipulated strains of zebrafish, immune privilege during early embryonic development, transparency of the embryos, and easy and precise setup of hypoxia equipment, we have developed several disease models in both embryonic and adult zebrafish, focusing on studying the role of angiogenesis in pathological settings. These zebrafish disease models are complementary to the existing mouse models, allowing us to study clinically relevant processes in cancer and nonmalignant diseases, which otherwise would be difficult to study in mice. For example, dissemination and invasion of single human or mouse tumor cells from the primary site in association with tumor angiogenesis can be studied under normoxia or hypoxia in zebrafish embryos. Hypoxia-induced retinopathy in the adult zebrafish recapitulates the clinical situation of retinopathy development in diabetic patients or age-related macular degeneration. These zebrafish disease models offer exciting opportunities to understand the mechanisms of disease development, progression, and development of more effective drugs for therapeutic intervention.


Asunto(s)
Sistema Cardiovascular/embriología , Retinopatía Diabética/fisiopatología , Modelos Animales de Enfermedad , Sistema Linfático/embriología , Degeneración Macular/fisiopatología , Neoplasias/fisiopatología , Neovascularización Patológica/fisiopatología , Pez Cebra , Animales , Animales Modificados Genéticamente , Sistema Cardiovascular/anatomía & histología , Hipoxia de la Célula/fisiología , Humanos , Sistema Linfático/anatomía & histología , Sistema Linfático/fisiología , Neovascularización Patológica/etiología , Regeneración/fisiología , Transducción de Señal/fisiología , Especificidad de la Especie
9.
Nat Protoc ; 5(12): 1903-10, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21127484

RESUMEN

Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available. In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1:EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs.


Asunto(s)
Retinopatía Diabética/etiología , Modelos Animales de Enfermedad , Hipoxia/complicaciones , Neovascularización Patológica/patología , Pez Cebra , Animales , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Neovascularización Patológica/etiología
10.
Nat Protoc ; 5(12): 1911-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21127485

RESUMEN

Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.


Asunto(s)
Modelos Animales de Enfermedad , Hipoxia/complicaciones , Metástasis de la Neoplasia/patología , Neovascularización Patológica/patología , Pez Cebra/embriología , Animales , Línea Celular Tumoral , Embrión no Mamífero , Humanos , Ratones , Microscopía Fluorescente , Invasividad Neoplásica/fisiopatología , Neovascularización Patológica/etiología
11.
Cell Cycle ; 9(5): 913-7, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20160500

RESUMEN

Clinically detectable metastases represent an ultimate consequence of the metastatic cascade that consists of distinct processes including tumor cell invasion, dissemination, metastatic niche formation, and re-growth into a detectable metastatic mass. Although angiogenesis is known to promote tumor growth, its role in facilitating early events of the metastatic cascade remains poorly understood. We have recently developed a zebrafish tumor model that enables us to study involvement of pathological angiogenesis in tumor invasion, dissemination and metastasis. This non-invasive in vivo model allows detection of single malignant cell dissemination under both normoxia and hypoxia. Further, hypoxia-induced VEGF significantly facilitates tumor cell invasion and dissemination. These findings demonstrate that VEGF-induced pathological angiogenesis is essential for tumor dissemination and further corroborates potentially beneficial effects of clinically ongoing anti-VEGF drugs for the treatment of various malignancies.


Asunto(s)
Invasividad Neoplásica , Metástasis de la Neoplasia , Neovascularización Patológica , Animales , Hipoxia , Modelos Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
12.
Proc Natl Acad Sci U S A ; 106(46): 19485-90, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19887629

RESUMEN

Mechanisms underlying pathological angiogenesis in relation to hypoxia in tumor invasion and metastasis remain elusive. Here, we have developed a zebrafish tumor model that allows us to study the role of pathological angiogenesis under normoxia and hypoxia in arbitrating early events of the metastatic cascade at the single cell level. Under normoxia, implantation of a murine T241 fibrosarcoma into the perivitelline cavity of developing embryos of transgenic fli1:EGFP zebrafish did not result in significant dissemination, invasion, and metastasis. In marked contrast, under hypoxia substantial tumor cells disseminated from primary sites, invaded into neighboring tissues, and metastasized to distal parts of the fish body. Similarly, expression of the hypoxia-regulated angiogenic factor, vascular endothelial growth factor (VEGF) to a high level resulted in tumor cell dissemination and metastasis, which correlated with increased tumor neovascularization. Inhibition of VEGF receptor signaling pathways by sunitinib or VEGFR2 morpholinos virtually completely ablated VEGF-induced tumor cell dissemination and metastasis. To the best of our knowledge, hypoxia- and VEGF-induced pathological angiogenesis in promoting tumor dissemination, invasion, and metastasis has not been described perviously at the single cell level. Our findings also shed light on molecular mechanisms of beneficial effects of clinically available anti-VEGF drugs for cancer therapy.


Asunto(s)
Modelos Animales de Enfermedad , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neovascularización Patológica/patología , Pez Cebra , Animales , Animales Modificados Genéticamente , Hipoxia de la Célula , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...