Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354383

RESUMEN

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Asunto(s)
Ascomicetos , Cloruro Peroxidasa , Exophiala , Respiraderos Hidrotermales , Cloruro Peroxidasa/genética , Cloruro Peroxidasa/química , Cloruro Peroxidasa/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanadio/metabolismo , Inteligencia Artificial , Ascomicetos/genética
2.
Chemistry ; 29(38): e202300103, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893323

RESUMEN

Communesins are rare alkaloids isolated from fungi of the genus Penicillium. In this work, the extract of a marine-derived Penicillium expansum strain was studied using targeted molecular networking approach allowing to detect 65 communesins including 55 new ones. A fragmentation pattern for dimethylvinyl communesins was established and a script was implemented allowing to predict the structure and map all communesins in a global molecular network. A semisynthetic strategy was carried out to obtain some minor congeners from the two isolated communesins A and B. Nine communesins were then synthetised: two of them were already described as produced by the studied strain; four are new natural products which occurrence in the extracts was confirmed; three are new semi-synthetic analogues never described so far. These communesins were evaluated for their cytotoxicity on two human cancer cell lines KB and MCF-7 leading to a preliminary study of their structure-activity relationships.


Asunto(s)
Alcaloides , Productos Biológicos , Penicillium , Humanos , Alcaloides/química , Hongos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo
3.
J Fungi (Basel) ; 8(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36294577

RESUMEN

Endolichenic microorganisms represent a new source of bioactive natural compounds. Lichens, resulting from a symbiotic association between algae or cyanobacteria and fungi, constitute an original ecological niche for these microorganisms. Endolichenic fungi inhabiting inside the lichen thallus have been isolated and characterized. By cultivation on three different culture media, endolichenic fungi gave rise to a wide diversity of bioactive metabolites. A total of 38 extracts were screened for their anti-maturation effect on Candida albicans biofilms. The 10 most active ones, inducing at least 50% inhibition, were tested against 24 h preformed biofilms of C. albicans, using a reference strain and clinical isolates. The global molecular network was associated to bioactivity data in order to identify and priorize active natural product families. The MS-targeted isolation led to the identification of new oxygenated fatty acid in Preussia persica endowed with an interesting anti-biofilm activity against C. albicans yeasts.

4.
Molecules ; 27(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630634

RESUMEN

In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.


Asunto(s)
Hongos , Halogenación , Bacterias/metabolismo , Hongos/genética , Hongos/metabolismo , Genoma Fúngico , Halógenos/química
5.
Appl Environ Microbiol ; 88(6): e0237821, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080910

RESUMEN

The model ascomycete Podospora anserina, distinguished by its strict sexual development, is a prolific but yet unexploited reservoir of natural products. The GATA-type transcription factor NsdD has been characterized by the role in balancing asexual and sexual reproduction and governing secondary metabolism in filamentous fungi. In the present study, we functionally investigated the NsdD ortholog PaNsdD in P. anserina. Compared to the wild-type strain, vegetative growth, ageing processes, sexual reproduction, stress tolerance, and interspecific confrontations in the mutant were drastically impaired, owing to the loss of function of PaNsdD. In addition, the production of 3-acetyl-4-methylpyrrole, a new metabolite identified in P. anserina in this study, was significantly inhibited in the ΔPaNsdD mutant. We also demonstrated the interplay of PaNsdD with the sterigmatocystin biosynthetic gene pathway, especially as the deletion of PaNsdD triggered the enhanced red-pink pigment biosynthesis that occurs only in the presence of the core polyketide synthase-encoding gene PaStcA of the sterigmatocystin pathway. Taken together, these results contribute to a better understanding of the global regulation mediated by PaNsdD in P. anserina, especially with regard to its unexpected involvement in the fungal ageing process and its interplay with the sterigmatocystin pathway. IMPORTANCE Fungal transcription factors play an essential role in coordinating multiple physiological processes. However, little is known about the functional characterization of transcription factors in the filamentous fungus Podospora anserina. In this study, a GATA-type regulator PaNsdD was investigated in P. anserina. The results showed that PaNsdD was a key factor that can control the fungal ageing process, vegetative growth, pigmentation, stress response, and interspecific confrontations and positively regulate the production of 3-acetyl-4-methylpyrrole. Meanwhile, a molecular interaction was implied between PaNsdD and the sterigmatocystin pathway. Overall, loss of function of PaNsdD seems to be highly disadvantageous for P. anserina, which relies on pure sexual reproduction in a limited life span. Therefore, PaNsdD is clearly indispensable for the survival and propagation of P. anserina in its complex ecological niches.


Asunto(s)
Podospora , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Factores de Transcripción GATA/metabolismo , Podospora/genética , Podospora/metabolismo , Esterigmatocistina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Fungi (Basel) ; 9(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36675830

RESUMEN

The coprophilous ascomycete Podospora anserina is known to have a high potential to synthesize a wide array of secondary metabolites (SMs). However, to date, the characterization of SMs in this species, as in other filamentous fungal species, is far less than expected by the functional prediction through genome mining, likely due to the inactivity of most SMs biosynthesis gene clusters (BGCs) under standard conditions. In this work, our main objective was to compare the global strategies usually used to deregulate SM gene clusters in P. anserina, including the variation of culture conditions and the modification of the chromatin state either by genetic manipulation or by chemical treatment, and to show the complementarity of the approaches between them. In this way, we showed that the metabolomics-driven comparative analysis unveils the unexpected diversity of metabolic changes in P. anserina and that the integrated strategies have a mutual complementary effect on the expression of the fungal metabolome. Then, our results demonstrate that metabolite production is significantly influenced by varied cultivation states and epigenetic modifications. We believe that the strategy described in this study will facilitate the discovery of fungal metabolites of interest and will improve the ability to prioritize the production of specific fungal SMs with an optimized treatment.

7.
Rapid Commun Mass Spectrom ; 34(19): e8859, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32530533

RESUMEN

RATIONALE: The dinoflagellate genera Gambierdiscus and Fukuyoa are producers of toxins responsible for Ciguatera Poisoning (CP). Although having very low oral potency, maitotoxins (MTXs) are very toxic following intraperitoneal injection and feeding studies have shown they may accumulate in fish muscle. To date, six MTX congeners have been described but two congeners (MTX2 and MTX4) have not yet been structurally elucidated. The aim of the present study was to further characterize MTX4. METHODS: Chemical analysis was performed using liquid chromatography coupled to a diode-array detector (DAD) and positive ion mode high-resolution mass spectrometry (LC/HRMS) on partially purified extracts of G. excentricus (strain VGO792). HRMS/MS studies were also carried out to tentatively explain the fragmentation pathways of MTX and MTX4. RESULTS: The comparison of UV and HRMS (ESI+ ) spectra between MTX and MTX4 led us to propose the elemental formula of MTX4 (C157 H241 NO68 S2 , as the unsalted molecule). The comparison of the theoretical and measured m/z values of the doubly charged ions of the isotopic profile in ESI+ were coherent with the proposed elemental formula of MTX4. The study of HRMS/MS spectra on the tri-ammoniated adduct ([M - H + 3NH4 ]2+ ) of both molecules gave additional information about structural features. The cleavage observed, probably located at C99 -C100 in both MTX and MTX4, highlighted the same A-side product ion shared by the two molecules. CONCLUSIONS: All these investigations on the characterization of MTX4 contribute to highlighting that MTX4 belongs to the same structural family of MTXs. However, to accomplish a complete structural elucidation of MTX4, an NMR-based study and LC/HRMSn investigation will have to be carried out.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas , Oxocinas , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida/métodos , Espectroscopía de Resonancia Magnética , Toxinas Marinas/análisis , Toxinas Marinas/química , Oxocinas/análisis , Oxocinas/química
8.
Nat Protoc ; 15(6): 1954-1991, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32405051

RESUMEN

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Humanos , Redes y Vías Metabólicas , Ratones , Reproducibilidad de los Resultados , Programas Informáticos , Flujo de Trabajo
9.
Rapid Commun Mass Spectrom ; 34(12): e8780, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32154942

RESUMEN

RATIONALE: In the field of natural products, de-replication of complex mixtures has become a usual practice to annotate known compounds and avoid their re-isolation. For this purpose, many groups rely on liquid chromatography coupled to high-resolution mass spectrometry (HPLC/MS) to deduce molecular formulae of compounds allowing comparison with public or in-house databases. Electrospray ionization (ESI) is usually considered as the method of choice for investigating a large panel of compounds but, in some cases, it may lead to unusual results as described in this article for ergosterol. METHODS: Ergosterol and other fungal sterols in methanolic solution were analysed using various chromatographic gradients with HPLC/MS using both ion trap time-of-flight MS and Orbitrap MS instruments fitted with an ESI source. Further flow injection analyses were performed to investigate the influence of the solvent composition. MS/MS fragmentation data were acquired to annotate the various ions observed. RESULTS: Contrary to other fungal sterols, ergosterol was found to be highly sensitive to oxidation during ESI. Putative structures were proposed based on MS/MS studies and known oxidation mechanisms of ergosterol by reactive oxygen species that could be formed in the ESI process. The proportion of acetonitrile in the eluent was found to influence this in-source oxidation, with an increased proportion of oxidized sodium adducts with higher proportions of acetonitrile. CONCLUSIONS: While ergosterol is a major sterol found in fungi, this study investigates its ionization by electrospray for the first time. The results reported here will help further detection and annotation of this compound in fungal extracts after HPLC/ESI-MS analyses.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ergosterol/análisis , Ergosterol/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Productos Biológicos/química , Espectrometría de Masas en Tándem
10.
Biotechnol Adv ; 40: 107521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31953204

RESUMEN

Natural products (NPs) are considered as a cornerstone for the generation of bioactive leads in drug discovery programs. However, one of the major limitations of NP drug discovery program is "rediscovery" of known compounds, thereby hindering the rate of drug discovery efficiency. Therefore, in recent years, to overcome these limitations, a great deal of attention has been drawn towards understanding the role of microorganisms' co-culture in inducing novel chemical entities. Such induction could be related to activation of genes which might be silent or expressed at very low levels (below detection limit) in pure-strain cultures under normal laboratory conditions. In this review, chemical diversity of compounds isolated from microbial co-cultures, is discussed. For this purpose, chemodiversity has been represented as a chemical-structure network based on the "Tanimoto Structural Similarity Index". This highlights the huge structural diversity induced by microbial co-culture. In addition, the current trends in microbial co-culture research are highlighted. Finally, the current challenges (1 - induction monitoring, 2 - reproducibility, 3 - growth time effect and 4 - up-scaling for isolation purposes) are discussed. The information in this review will support researchers to design microbial co-culture strategies for future research efforts. In addition, guidelines for co-culture induction reporting are also provided to strengthen future reporting in this NP field.


Asunto(s)
Técnicas de Cocultivo , Productos Biológicos , Descubrimiento de Drogas , Reproducibilidad de los Resultados
11.
Anal Chim Acta ; 1070: 29-42, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31103165

RESUMEN

In natural product drug discovery, several strategies have emerged to highlight specifically bioactive compound(s) within complex mixtures (fractions or crude extracts) using metabolomics tools. In this area, a great deal of interest has raised among the scientific community on strategies to link chemical profiles and associated biological data, leading to the new field called "biochemometrics". This article falls into this emerging research by proposing a complete workflow, which was divided into three major steps. The first one consists in the fractionation of the same extract using four different chromatographic stationary phases and appropriated elution conditions to obtain five fractions for each column. The second step corresponds to the acquisition of chemical profiles using HPLC-HRMS analysis, and the biological evaluation of each fraction. The last step evaluates the links between the relative abundances of molecules present in fractions (peak area) and the global bioactivity level observed for each fraction. To this purpose, an original bioinformatics script (encoded with R Studio software) using the combination of four statistical models (Spearman, F-PCA, PLS, PLS-DA) was here developed leading to the generation of a "Super list" of potential bioactive compounds together with a predictive score. This strategy was validated by its application on a marine-derived Penicillium chrysogenum extract exhibiting antiproliferative activity on breast cancer cells (MCF-7 cells). After the three steps of the workflow, one main compound was highlighted as responsible for the bioactivity and identified as ergosterol. Its antiproliferative activity was confirmed with an IC50 of 0.10 µM on MCF-7 cells. The script efficiency was further demonstrated by comparing the results obtained with a different recently described approach based on NMR profiling and by virtually modifying the data to evaluate the computational tool behaviour. This approach represents a new and efficient tool to tackle some of the bottlenecks in natural product drug discovery programs.


Asunto(s)
Antineoplásicos/análisis , Productos Biológicos/análisis , Penicillium chrysogenum/química , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Biología Computacional , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Espectrometría de Masas , Programas Informáticos , Relación Estructura-Actividad , Flujo de Trabajo
12.
J Nat Prod ; 81(11): 2501-2511, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30407813

RESUMEN

Penicillium ubiquetum MMS330 isolated from the blue mussel Mytilus edulis collected on the Loire estuary in France was here investigated. As very few secondary metabolites have been documented for this species, its metabolome was studied following the OSMAC approach to enhance as many biosynthetic pathways as possible. Interestingly, HPLC-HRMS based hierarchical clustering analysis together with MS/MS molecular networking highlighted the selective overproduction of some structurally related compounds when the culture was performed on seawater CYA (Czapek Yeast extract Agar) medium. Mass-guided purification from large scale cultivation on this medium led to the isolation of nine meroterpenoids including two new analogues, 22-deoxyminiolutelide A (1) and 4-hydroxy-22-deoxyminiolutelide B (2), together with seven known compounds (3-9). The structures of 1 and 2 were elucidated on the basis of HR-ESIMS and NMR spectroscopic data analysis. Furthermore, NMR signals of 22-deoxyminiolutelide B (3) were reassigned.


Asunto(s)
Bivalvos/microbiología , Metabolómica , Penicillium/metabolismo , Terpenos/metabolismo , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masas en Tándem/métodos , Terpenos/química , Terpenos/aislamiento & purificación
13.
ACS Chem Biol ; 13(11): 3097-3106, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272441

RESUMEN

An optimized nitroso-based probe that facilitates the discovery of conjugated alkene-containing natural products in unprocessed extracts was developed. It chemoselectively reacts with conjugated olefins via a nitroso-Diels-Alder cyclization to yield derivatives with a distinct chromophore and an isotopically unique bromine atom that can be rapidly identified using liquid chromatography/mass spectrometry and a bioinformatics tool called MeHaloCoA (Marine Halogenated Compound Analysis). The probe is ideally employed when genome-mining techniques identify strains containing polyketide gene clusters with two or more repeating KS-AT-DH-KR-ACP domain sequences, which are required for the biosynthesis of conjugated alkenes. Comparing the reactivity and spectral properties of five brominated arylnitroso reagents with model compounds spiramycin, bufalin, rapamycin, and rifampicin led to the identification of 5-bromo-2-nitrosopyridine as the most suitable probe structure. The utility of the dienophile probe was then demonstrated in bacterial extracts. Tylactone, novodaryamide and daryamide A, piperazimycin A, and the saccharamonopyrones A and B were cleanly labeled in extracts from their respective bacterial producers, in high regioselectivity but with varying degrees of diastereoselectivity. Further application of the method led to the discovery of a new natural product called nocarditriene, containing an unprecedented epoxy-2,3,4,5-tetrahydropyridine structure, from marine-derived Nocardiopsis strain CNY-503.


Asunto(s)
Alquenos/química , Productos Biológicos/química , Indicadores y Reactivos/química , Compuestos Nitrosos/química , Policétidos/química , Piridinas/química , Actinomycetales/química , Alquenos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Reacción de Cicloadición , Policétidos/aislamiento & purificación
14.
FEMS Microbiol Lett ; 364(22)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069388

RESUMEN

Usually living as a soil saprophyte, the filamentous fungus Scedosporium boydii may also cause various infections in human. Particularly, it is one of the major causative agents of fungal colonization of the airways in patients with cystic fibrosis (CF). To compete with other microorganisms in the environment, fungi have evolved sophisticated strategies, including the production of secondary metabolites with antimicrobial activity that may also help them to establish successfully within the respiratory tract of receptive hosts. Here, the culture filtrate from a human pathogenic strain of S. boydii was investigated searching for an antibacterial activity, mainly against the major CF bacterial pathogens. A high antibacterial activity against Staphylococcus aureus, including methicillin-resistant strains of this species, was observed. Bio-guided fractionation and analysis of the active fractions by nuclear magnetic resonance or by high-performance liquid chromatography and high-resolution electrospray ionization-mass spectrometry allowed us to identify boydone A as responsible for this antibacterial activity. Together, these results suggest that this six-membered cyclic polyketide could be one of the virulence factors of the fungus. Genes involved in the synthesis of this secreted metabolite are currently being identified in order to confirm the role of this polyketide in pathogenesis.


Asunto(s)
Enfermedades Pulmonares Fúngicas/microbiología , Policétidos/farmacología , Scedosporium/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Cromatografía Líquida de Alta Presión , Fibrosis Quística/microbiología , Humanos , Extracción Líquido-Líquido , Policétidos/metabolismo , Scedosporium/química
15.
Mar Drugs ; 15(8)2017 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-28805714

RESUMEN

The discovery of new natural products from fungi isolated from the marine environment has increased dramatically over the last few decades, leading to the identification of over 1000 new metabolites. However, most of the reported marine-derived species appear to be terrestrial in origin yet at the same time, facultatively halo- or osmotolerant. An unanswered question regarding the apparent chemical productivity of marine-derived fungi is whether the common practice of fermenting strains in seawater contributes to enhanced secondary metabolism? To answer this question, a terrestrial isolate of Aspergillus aculeatus was fermented in osmotic and saline stress conditions in parallel across multiple sites. The ex-type strain of A. aculeatus was obtained from three different culture collections. Site-to-site variations in metabolite expression were observed, suggesting that subculturing of the same strain and subtle variations in experimental protocols can have pronounced effects upon metabolite expression. Replicated experiments at individual sites indicated that secondary metabolite production was divergent between osmotic and saline treatments. Titers of some metabolites increased or decreased in response to increasing osmolite (salt or glycerol) concentrations. Furthermore, in some cases, the expression of some secondary metabolites in relation to osmotic and saline stress was attributed to specific sources of the ex-type strains.


Asunto(s)
Aspergillus/química , Productos Biológicos/metabolismo , Presión Osmótica , Antibacterianos/metabolismo , Aspergillus/efectos de los fármacos , Fermentación , Biología Marina , Estructura Molecular , Agua de Mar/microbiología , Metabolismo Secundario , Cloruro de Sodio/farmacología
16.
Mar Drugs ; 15(7)2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28696398

RESUMEN

Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas/química , Toxinas Marinas/toxicidad , Oxocinas/química , Oxocinas/toxicidad , Animales , Bioensayo/métodos , Brasil , Región del Caribe , Línea Celular Tumoral , Intoxicación por Ciguatera/genética , Intoxicación por Ciguatera/parasitología , Ciguatoxinas/toxicidad , Ratones , Filogenia , España , Especificidad de la Especie
17.
Anal Chem ; 88(18): 9143-50, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27537349

RESUMEN

A collection of culture extracts obtained from several marine-derived fungal strains collected on the French Atlantic coast was investigated by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) in order to prospect for halogenated compounds and to identify potentially new ones. To achieve a fast, automated, and efficient data analysis, a bioinformatics tool named MeHaloCoA (Marine Halogenated Compound Analysis) was developed and included into R. After extraction of all the peaks from the metabolic fingerprints and their associated mass spectra, a mathematical filter based on mass isotopic profiles allowed the selective detection of halogenated (Cl and Br) molecules. Integrating MeHaloCoA into a dereplication approach allowed the identification of known and new halogenated compounds in a competitive amount of time. Subsequent targeted purification led to the isolation of several chlorinated metabolites, including two new natural products with bioactive potential, griseophenone I and chlorogriseofulvin, from a marine-derived Penicillium canescens strain.


Asunto(s)
Productos Biológicos/análisis , Hongos/química , Hidrocarburos Clorados/análisis , Productos Biológicos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Hongos/metabolismo , Halogenación , Hidrocarburos Clorados/metabolismo , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Penicillium/química , Penicillium/metabolismo
18.
Mar Drugs ; 14(5)2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27213411

RESUMEN

This work aimed at studying metabolome variations of marine fungal strains along their growth to highlight the importance of the parameter "time" for new natural products discovery. An untargeted time-scale metabolomic study has been performed on two different marine-derived Penicillium strains. They were cultivated for 18 days and their crude extracts were analyzed by HPLC-DAD-HRMS (High Performance Liquid Chromatography-Diode Array Detector-High Resolution Mass Spectrometry) each day. With the example of griseofulvin biosynthesis, a pathway shared by both strains, this work provides a new approach to study biosynthetic pathway regulations, which could be applied to other metabolites and more particularly new ones. Moreover, the results of this study emphasize the interest of such an approach for the discovery of new chemical entities. In particular, at every harvesting time, previously undetected features were observed in the LC-MS (Liquid Chromatography-Mass Spectrometry) data. Therefore, harvesting times for metabolite extraction should be performed at different time points to access the hidden metabolome.


Asunto(s)
Organismos Acuáticos/metabolismo , Vías Biosintéticas/fisiología , Metaboloma/fisiología , Penicillium/metabolismo , Productos Biológicos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Biología Marina/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
19.
ACS Chem Biol ; 8(12): 2654-9, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24079418

RESUMEN

Fragment-based screening is commonly used to identify compounds with relatively weak but efficient localized binding to protein surfaces. We used mass spectrometry to study fragment-sized three-dimensional natural products. We identified seven securinine-related compounds binding to Plasmodium falciparum 2'-deoxyuridine 5'-triphosphate nucleotidohydrolase (PfdUTPase). Securinine bound allosterically to PfdUTPase, enhancing enzyme activity and inhibiting viability of both P. falciparum gametocyte (sexual) and blood (asexual) stage parasites. Our results provide a new insight into mechanisms that may be applicable to transmission-blocking agents.


Asunto(s)
Antimaláricos/farmacología , Productos Biológicos/química , Estadios del Ciclo de Vida/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Azepinas/química , Azepinas/aislamiento & purificación , Azepinas/farmacología , Nucleótidos de Desoxiuracil/antagonistas & inhibidores , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos de Anillo en Puente/química , Compuestos Heterocíclicos de Anillo en Puente/aislamiento & purificación , Compuestos Heterocíclicos de Anillo en Puente/farmacología , Cinética , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Estadios del Ciclo de Vida/fisiología , Piperidinas/química , Piperidinas/aislamiento & purificación , Piperidinas/farmacología , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
20.
Chem Biodivers ; 10(5): 772-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23681725

RESUMEN

In the course of investigations on marine-derived toxigenic fungi, five strains of Trichoderma atroviride were studied for their production of peptaibiotics. While these five strains were found to produce classical 19-residue peptaibols, three of them exhibited unusual peptidic sodium-adduct [M + 2 Na](2+) ion peaks at m/z between 824 and 854. The sequencing of these peptides led to two series of unprecedented 17-residue peptaibiotics based on the model Ac-XXX-Ala-Ala-XXX-XXX-Gln-Aib-Aib-Aib-Ala/Ser-Lxx-Aib-Pro-XXX-Aib-Lxx-[C(129) ]. The C-terminus of these new peptides was common to all of them, and its elemental formula C5 H9 N2 O2 was established by HR-MS. It could correspond to the cyclized form of N(δ) -hydroxyornithine which has already been observed at the C-terminus of various peptidic siderophores. The comparison of the sequences of 17- and 19-residue peptides showed similarities for positions 1-16. This observation seems to indicate a common biosynthesis pathway. Both new 17-residue peptaibiotics and 19-residue peptaibols exhibited weak in vitro cytotoxicities against KB cells.


Asunto(s)
Antibacterianos/química , Peptaiboles/química , Trichoderma/química , Secuencia de Aminoácidos , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Células KB , Datos de Secuencia Molecular , Estructura Molecular , Peptaiboles/genética , Peptaiboles/farmacología , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Trichoderma/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...