Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuroimage Clin ; 30: 102653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33838548

RESUMEN

BACKGROUND: Fractal geometry measures the morphology of the brain and detects CNS damage. We aimed to assess the longitudinal changes on brain's fractal geometry and its predictive value for disease worsening in patients with Multiple Sclerosis (MS). METHODS: We prospectively analyzed 146 consecutive patients with relapsing-remitting MS with up to 5 years of clinical and brain MRI (3 T) assessments. The fractal dimension and lacunarity were calculated for brain regions using box-counting methods. Longitudinal changes were analyzed in mixed-effect models and the risk of disability accumulation were assessed using Cox Proportional Hazard regression analysis. RESULTS: There was a significant decrease in the fractal dimension and increases of lacunarity in different brain regions over the 5-year follow-up. Lower cortical fractal dimension increased the risk of disability accumulation for the Expanded Disability Status Scale [HR 0.9734, CI 0.8420-0.9125; Harrell C 0.59; Wald p 0.038], 9-hole peg test [HR 0.9734, CI 0.8420-0.9125; Harrell C 0.59; Wald p 0.0083], 2.5% low contrast vision [HR 0.4311, CI 0.2035-0.9133; Harrell C 0.58; Wald p 0.0403], symbol digit modality test [HR 2.215, CI 1.043-4.705; Harrell C 0.65; Wald p 0.0384] and MS Functional Composite-4 [HR 0.55, CI 0.317-0.955; Harrell C 0.59; Wald p 0.0029]. CONCLUSIONS: Fractal geometry analysis of brain MRI identified patients at risk of increasing their disability in the next five years.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Evaluación de la Discapacidad , Progresión de la Enfermedad , Fractales , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen
2.
J Neurotrauma ; 36(11): 1794-1803, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30648469

RESUMEN

Traumatic brain injury is a complex and diverse medical condition with a high frequency of intracranial abnormalities. These can typically be visualized on a computed tomography (CT) scan, which provides important information for further patient management, such as the need for operative intervention. In order to quantify the extent of acute intracranial lesions and associated secondary injuries, such as midline shift and cisternal compression, visual assessment of CT images has limitations, including observer variability and lack of quantitative interpretation. Automated image analysis can quantify the extent of intracranial abnormalities and provide added value in routine clinical practice. In this article, we present icobrain, a fully automated method that reliably computes acute intracranial lesions volume based on deep learning, cistern volume, and midline shift on the noncontrast CT image of a patient. The accuracy of our method is evaluated on a subset of the multi-center data set from the CENTER-TBI (Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury) study for which expert annotations were used as a reference. Median volume differences between expert assessments and icobrain are 0.07 mL for acute intracranial lesions and -0.01 mL for cistern segmentation. Correlation between expert assessments and icobrain is 0.91 for volume of acute intracranial lesions and 0.94 for volume of the cisterns. For midline shift computations, median error is -0.22 mm, with a correlation of 0.93 with expert assessments.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Tomografía Computarizada por Rayos X/métodos , Humanos , Redes Neurales de la Computación
3.
Sci Rep ; 8(1): 13650, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209345

RESUMEN

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico , Tejido Parenquimatoso/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Masculino , Esclerosis Múltiple/patología , Redes Neurales de la Computación , Tejido Parenquimatoso/patología , Estudios Retrospectivos
4.
Neuroimage ; 155: 159-168, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28435096

RESUMEN

In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Redes Neurales de la Computación , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
5.
Med Image Anal ; 35: 446-457, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27598104

RESUMEN

Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community.


Asunto(s)
Automatización/métodos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/patología , Algoritmos , Humanos , Esclerosis Múltiple/patología
6.
Front Neuroinform ; 10: 33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27570507

RESUMEN

Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration.

7.
Neuroradiology ; 57(10): 1031-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26227167

RESUMEN

INTRODUCTION: Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. METHODS: Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. RESULTS: The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. CONCLUSION: Our tool is implemented as a publicly available SPM8/12 extension that can be used by both the medical and research communities.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Humanos , Aumento de la Imagen/métodos , Aprendizaje Automático , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Validación de Programas de Computación
8.
Neuroimage Clin ; 9: 640-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26740917

RESUMEN

Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Reconocimiento de Normas Patrones Automatizadas , Sustancia Gris/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Sustancia Blanca/patología
9.
J Magn Reson Imaging ; 41(1): 93-101, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24459099

RESUMEN

PURPOSE: Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datasets consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue segmentation methods analyzing the effects of SCSF ground-truth voxels on accuracy estimations. MATERIALS AND METHODS: The set of methods is composed by FAST, SPM5, SPM8, GAMIXTURE, ANN, FCM, KNN, SVPASEG, FANTASM, and PVC. Methods are evaluated using original IBSR ground-truth and ranked by means of their performance on pairwise comparisons using permutation tests. Afterward, the evaluation is repeated using IBSR ground-truth without considering SCSF. RESULTS: The Dice coefficient of all methods is affected by changes in SCSF annotations, especially on SPM5, SPM8 and FAST. When not considering SCSF voxels, SVPASEG (0.90 ± 0.01) and SPM8 (0.91 ± 0.01) are the methods from our study that appear more suitable for gray matter tissue segmentation, while FAST (0.89 ± 0.02) is the best tool for segmenting white matter tissue. CONCLUSION: The performance and the accuracy of methods on IBSR images vary notably when not considering SCSF voxels. The fact that three of the most common methods (FAST, SPM5, and SPM8) report an important change in their accuracy suggest to consider these differences in labeling for new comparative studies.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Conjuntos de Datos como Asunto/estadística & datos numéricos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Mapeo Encefálico/métodos , Humanos , Reproducibilidad de los Resultados
10.
Funct Neurol ; 30(4): 245-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26727703

RESUMEN

Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis Both qualitative and quantitative evaluations are presented, showing that the MC approach provides better alignment with the target while maintaining better T1w and FA co-alignment.


Asunto(s)
Algoritmos , Atrofia/patología , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Esclerosis Múltiple/patología , Adulto , Anisotropía , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico , Sensibilidad y Especificidad
11.
Comput Methods Programs Biomed ; 115(3): 147-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813718

RESUMEN

Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/patología , Algoritmos , Automatización , Encéfalo/patología , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Distribución Normal , Probabilidad , Reproducibilidad de los Resultados , Programas Informáticos
12.
Comput Methods Programs Biomed ; 113(2): 655-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24380649

RESUMEN

Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques.


Asunto(s)
Algoritmos , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Esquizofrenia/patología , Estudios de Casos y Controles , Bases de Datos Factuales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...