Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5752, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717031

RESUMEN

Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes. The turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized to the metastable OH state, and a reductive phase, in which OH is reduced back to the R state. During each phase, two protons are translocated across the membrane. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX), we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide insights into the proton translocation mechanism of CcO.


Asunto(s)
Complejo IV de Transporte de Electrones , Protones , Membrana Celular , Cristalografía por Rayos X , Oxígeno
2.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37695261

RESUMEN

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Bovinos , Animales , Complejo IV de Transporte de Electrones/química , Oxidación-Reducción , Cobre/química , Ligandos , Oxígeno/química , Cristalografía por Rayos X , Hierro/química , Agua/metabolismo
3.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214971

RESUMEN

Cytochrome c oxidase (C c O) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, C c O has a unique binuclear center (BNC) comprised of a copper atom (Cu B ) and a heme a 3 iron, where O 2 binds and is reduced to water. CO is a versatile O 2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine C c O (bC c O) revealed that photolyzing CO from the heme a 3 iron leads to a metastable intermediate (Cu B -CO), where CO is bound to Cu B , before it escapes out of the BNC. Here, with a time-resolved serial femtosecond X-ray crystallography-based pump-probe method, we detected a geminate photoproduct of the bC c O-CO complex, where CO is dissociated from the heme a 3 iron and moved to a temporary binding site midway between the Cu B and the heme a 3 iron, while the locations of the two metal centers and the conformation of the Helix-X, housing the proximal histidine ligand of the heme a 3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bC c O, allows the full definition of the ligand dissociation trajectory, as well as the associated protein dynamics.

4.
bioRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993562

RESUMEN

Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes, thereby establishing the proton gradient required for ATP synthesis1. The full turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized by molecular oxygen to the metastable oxidized OH state, and a reductive phase, in which OH is reduced back to the R state. During each of the two phases, two protons are translocated across the membranes2. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation2,3. How the O state structurally differs from OH remains an enigma in modern bioenergetics. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX)4, we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state5,6, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, a residue covalently linked to one of the three CuB ligands and critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide new insights into the proton translocation mechanism of CcO.

5.
J Biol Chem ; 298(4): 101799, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257742

RESUMEN

Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in the inner membrane of mitochondria. It contains four metal redox centers, two of which, CuB and heme a3, form the binuclear center (BNC), where dioxygen is reduced to water. Crystal structures of CcO in various forms have been reported, from which ligand-binding states of the BNC and conformations of the protein matrix surrounding it have been deduced to elucidate the mechanism by which the oxygen reduction chemistry is coupled to proton translocation. However, metal centers in proteins can be susceptible to X-ray-induced radiation damage, raising questions about the reliability of conclusions drawn from these studies. Here, we used microspectroscopy-coupled X-ray crystallography to interrogate how the structural integrity of bovine CcO in the fully oxidized state (O) is modulated by synchrotron radiation. Spectroscopic data showed that, upon X-ray exposure, O was converted to a hybrid O∗ state where all the four metal centers were reduced, but the protein matrix was trapped in the genuine O conformation and the ligands in the BNC remained intact. Annealing the O∗ crystal above the glass transition temperature induced relaxation of the O∗ structure to a new R∗ structure, wherein the protein matrix converted to the fully reduced R conformation with the exception of helix X, which partly remained in the O conformation because of incomplete dissociation of the ligands from the BNC. We conclude from these data that reevaluation of reported CcO structures obtained with synchrotron light sources is merited.


Asunto(s)
Complejo IV de Transporte de Electrones , Metales , Rayos X , Animales , Bovinos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/efectos de la radiación , Ligandos , Metales/química , Oxidación-Reducción , Estructura Terciaria de Proteína/efectos de la radiación , Reproducibilidad de los Resultados , Temperatura
6.
Proc Natl Acad Sci U S A ; 116(9): 3572-3577, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808749

RESUMEN

Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/química , Hierro/química , Oxígeno/química , Animales , Catálisis , Dominio Catalítico , Bovinos , Cobre/química , Cristalografía por Rayos X , Complejo IV de Transporte de Electrones/genética , Oxidación-Reducción , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 114(30): 8011-8016, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698372

RESUMEN

Cytochrome c oxidase (CcO), the terminal enzyme in the electron transfer chain, translocates protons across the inner mitochondrial membrane by harnessing the free energy generated by the reduction of oxygen to water. Several redox-coupled proton translocation mechanisms have been proposed, but they lack confirmation, in part from the absence of reliable structural information due to radiation damage artifacts caused by the intense synchrotron radiation. Here we report the room temperature, neutral pH (6.8), damage-free structure of bovine CcO (bCcO) in the carbon monoxide (CO)-bound state at a resolution of 2.3 Å, obtained by serial femtosecond X-ray crystallography (SFX) with an X-ray free electron laser. As a comparison, an equivalent structure was obtained at a resolution of 1.95 Å, from data collected at a synchrotron light source. In the SFX structure, the CO is coordinated to the heme a3 iron atom, with a bent Fe-C-O angle of ∼142°. In contrast, in the synchrotron structure, the Fe-CO bond is cleaved; CO relocates to a new site near CuB, which, in turn, moves closer to the heme a3 iron by ∼0.38 Å. Structural comparison reveals that ligand binding to the heme a3 iron in the SFX structure is associated with an allosteric structural transition, involving partial unwinding of the helix-X between heme a and a3, thereby establishing a communication linkage between the two heme groups, setting the stage for proton translocation during the ensuing redox chemistry.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Animales , Monóxido de Carbono/metabolismo , Bovinos , Cristalografía por Rayos X , Complejo IV de Transporte de Electrones/química , Conformación Proteica
8.
Opt Express ; 24(11): 11515-30, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27410079

RESUMEN

Reliable sample delivery is essential to biological imaging using X-ray Free Electron Lasers (XFELs). Continuous injection using the Gas Dynamic Virtual Nozzle (GDVN) has proven valuable, particularly for time-resolved studies. However, many important aspects of GDVN functionality have yet to be thoroughly understood and/or refined due to fabrication limitations. We report the application of 2-photon polymerization as a form of high-resolution 3D printing to fabricate high-fidelity GDVNs with submicron resolution. This technique allows rapid prototyping of a wide range of different types of nozzles from standard CAD drawings and optimization of crucial dimensions for optimal performance. Three nozzles were tested with pure water to determine general nozzle performance and reproducibility, with nearly reproducible off-axis jetting being the result. X-ray tomography and index matching were successfully used to evaluate the interior nozzle structures and identify the cause of off-axis jetting. Subsequent refinements to fabrication resulted in straight jetting. A performance test of printed nozzles at an XFEL provided high quality femtosecond diffraction patterns.

9.
Biochemistry ; 54(30): 4599-610, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26161848

RESUMEN

α-Synuclein (αSyn), which forms amyloid fibrils, is linked to the neuronal pathology of Parkinson's disease, as it is the major fibrillar component of Lewy bodies, the inclusions that are characteristic of the disease. Oligomeric structures, common to many neurodegenerative disease-related proteins, may in fact be the primary toxic species, while the amyloid fibrils exist either as a less toxic dead-end species or even as a beneficial mechanism for clearing damaged proteins. To alter the progression of the aggregation and gain insights into the prefibrillar structures, we determined the effect of heme on αSyn oligomerization by several different techniques, including native (nondenaturing) polyacrylamide gel electrophoresis, thioflavin T fluorescence, transmission electron microscopy, atomic force microscopy, circular dichroism, and membrane permeation using a calcein release assay. During aggregation, heme is able to bind the αSyn in a specific fashion, stabilizing distinct oligomeric conformations and promoting the formation of αSyn into annular structures, thereby delaying and/or inhibiting the fibrillation process. These results indicate that heme may play a regulatory role in the progression of Parkinson's disease; in addition, they provide insights into how the aggregation process may be altered, which may be applicable to the understanding of many neurodegenerative diseases.


Asunto(s)
Amiloide/química , Hemo/química , Multimerización de Proteína , alfa-Sinucleína/química , Amiloide/metabolismo , Amiloide/ultraestructura , Hemo/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
10.
Biochim Biophys Acta ; 1847(10): 1231-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116881

RESUMEN

The C-family (cbb3) of heme-copper oxygen reductases are proton-pumping enzymes terminating the aerobic respiratory chains of many bacteria, including a number of human pathogens. The most common form of these enzymes contains one copy each of 4 subunits encoded by the ccoNOQP operon. In the cbb3 from Rhodobacter capsulatus, the enzyme is assembled in a stepwise manner, with an essential role played by an assembly protein CcoH. Importantly, it has been proposed that a transient interaction between the transmembrane domains of CcoP and CcoH is essential for assembly. Here, we test this proposal by showing that a genetically engineered form of cbb3 from Vibrio cholerae (CcoNOQP(X)) that lacks the hydrophilic domain of CcoP, where the two heme c moieties are present, is fully assembled and stable. Single-turnover kinetics of the reaction between the fully reduced CcoNOQP(X) and O2 are essentially the same as the wild type enzyme in oxidizing the 4 remaining redox-active sites. The enzyme retains approximately 10% of the steady state oxidase activity using the artificial electron donor TMPD, but has no activity using the physiological electron donor cytochrome c4, since the docking site for this cytochrome is presumably located on the absent domain of CcoP. Residue E49 in the hydrophobic domain of CcoP is the entrance of the K(C)-channel for proton input, and the E49A mutation in the truncated enzyme further reduces the steady state activity to less than 3%. Hence, the same proton channel is used by both the wild type and truncated enzymes.

11.
J Phys Chem B ; 119(27): 8509-20, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26056844

RESUMEN

In heme-copper oxidases, the correlation curve between the iron-CO and C-O stretching vibrational modes (ν(Fe-CO) and ν(C-O), respectively) is anomalous as compared to the correlation in other heme proteins. To extend the correlation curve, the resonance Raman (RR) and infrared (IR) spectra of the CO adducts of cytochrome ba3 (ba3) from Thermus thermophilus were measured. The RR spectrum has two strong ν(Fe-CO) lines (508 and 515 cm(-1)) and a very weak line at 526 cm(-1), and the IR spectrum has three ν(C-O) lines (1966, 1973, and 1981 cm(-1)), indicating the presence of multiple conformers. Employing photodissociation methods, the ν(Fe-CO) RR and ν(C-O) IR lines were assigned to each conformer, enabling the establishment of a reliable inverse correlation curve for the ν(Fe-CO) versus the ν(C-O) stretching frequencies. To determine the molecular basis of the correlation, a series of DFT calculations on 6-coordinate porphyrin-CO compounds and a model of the binuclear center of the heme-copper oxidases were carried out. The calculations demonstrated that the copper unit model caused significant mixing among porphyrin-CO molecular orbitals (MOs) that contribute to the Fe-C and C-O bonding interactions, and also indicated the presence of mixing between the d(z)(2) orbital of the copper and MOs that are responsible for the ν(Fe-CO) vs ν(C-O) inverse correlation. Together, the spectroscopic and DFT results clarify the origin of the anomaly of ν(Fe-CO) and ν(C-O) frequencies in the heme-copper oxidases, a long-standing issue.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Carbono/química , Monóxido de Carbono/química , Grupo Citocromo b/química , Hierro/química , Modelos Químicos , Oxígeno/química , Porfirinas/química , Espectrofotometría Infrarroja , Espectrometría Raman , Thermus thermophilus
12.
Biochim Biophys Acta ; 1847(1): 98-108, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25268561

RESUMEN

Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Protones , Hemo/análogos & derivados , Hemo/química , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Oxidación-Reducción , Análisis Espectral/métodos , Vibración
13.
Proc Natl Acad Sci U S A ; 111(42): E4419-28, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288772

RESUMEN

The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Complejo IV de Transporte de Electrones/química , Vibrio cholerae/enzimología , Dominio Catalítico , Cobre/química , Citoplasma/metabolismo , Histidina/química , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxígeno/química , Conformación Proteica , Protones , Espectrofotometría Ultravioleta , Espectrometría Raman , Agua/química
14.
PLoS One ; 8(5): e63669, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696843

RESUMEN

Cytochrome c oxidase is the terminal enzyme in the electron transfer chain of essentially all organisms that utilize oxygen to generate energy. It reduces oxygen to water and harnesses the energy to pump protons across the mitochondrial membrane in eukaryotes and the plasma membrane in prokaryotes. The mechanism by which proton pumping is coupled to the oxygen reduction reaction remains unresolved, owing to the difficulty of visualizing proton movement within the massive membrane-associated protein matrix. Here, with a novel hydrogen/deuterium exchange resonance Raman spectroscopy method, we have identified two critical elements of the proton pump: a proton loading site near the propionate groups of heme a, which is capable of transiently storing protons uploaded from the negative-side of the membrane prior to their release into the positive side of the membrane and a conformational gate that controls proton translocation in response to the change in the redox state of heme a. These findings form the basis for a postulated molecular model describing a detailed mechanism by which unidirectional proton translocation is coupled to electron transfer from heme a to heme a 3, associated with the oxygen chemistry occurring in the heme a 3 site, during enzymatic turnover.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Animales , Bovinos , Oxidación-Reducción , Protones , Espectrometría Raman
15.
Inorg Chem ; 52(9): 4795-801, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23570607

RESUMEN

Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.


Asunto(s)
Mononucleótido de Flavina/metabolismo , Hemo/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Humanos , Cinética , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , Mutación Puntual , Conformación Proteica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Espectrometría Raman
16.
J Biol Chem ; 288(9): 6095-106, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23269673

RESUMEN

Nitric-oxide synthase (NOS) catalyzes nitric oxide (NO) synthesis via a two-step process: L-arginine (L-Arg) → N-hydroxy-L-arginine → citrulline + NO. In the active site the heme is coordinated by a thiolate ligand, which accepts a H-bond from a nearby tryptophan residue, Trp-188. Mutation of Trp-188 to histidine in murine inducible NOS was shown to retard NO synthesis and allow for transient accumulation of a new intermediate with a Soret maximum at 420 nm during the L-Arg hydroxylation reaction (Tejero, J., Biswas, A., Wang, Z. Q., Page, R. C., Haque, M. M., Hemann, C., Zweier, J. L., Misra, S., and Stuehr, D. J. (2008) J. Biol. Chem. 283, 33498-33507). However, crystallographic data showed that the mutation did not perturb the overall structure of the enzyme. To understand how the proximal mutation affects the oxygen chemistry, we carried out biophysical studies of the W188H mutant. Our stopped-flow data showed that the 420-nm intermediate was not only populated during the L-Arg reaction but also during the N-hydroxy-L-arginine reaction. Spectroscopic data and structural analysis demonstrated that the 420-nm intermediate is a hydroxide-bound ferric heme species that is stabilized by an out-of-plane distortion of the heme macrocycle and a cation radical centered on the tetrahydrobiopterin cofactor. The current data add important new insights into the previously proposed catalytic mechanism of NOS (Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. (2007) J. Am. Chem. Soc. 129, 6943-6951).


Asunto(s)
Mutación Missense , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico/química , Sustitución de Aminoácidos , Animales , Catálisis , Cristalografía por Rayos X , Estabilidad de Enzimas , Hemo/química , Hemo/genética , Hemo/metabolismo , Hierro/química , Hierro/metabolismo , Ratones , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
17.
J Am Chem Soc ; 134(10): 4753-61, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22296274

RESUMEN

The reaction of oxidized bovine cytochrome c oxidase (bCcO) with hydrogen peroxide (H(2)O(2)) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band EPR in the reaction of bCcO with H(2)O(2) at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The wide radical (46 G) exhibits g-values similar to a radical generated on L-Tyr by UV-irradiation and to tyrosyl radicals identified in many other enzyme systems. In contrast, the g-values of the narrow radical (12 G) deviate from L-Tyr in a trend akin to the radicals on tyrosines with substitutions at the ortho position. X-band EPR demonstrates that the two tyrosyl radicals differ in the orientation of their ß-methylene protons. The 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in bCcO. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. The results are supported by mixed quantum mechanics and molecular mechanics calculations. In addition to providing spectroscopic evidence of a radical formed on the post-translationally modified tyrosine in CcO, this study resolves the much debated controversy of whether the wide radical seen at low pH in the bovine enzyme is a tyrosine or tryptophan. The possible role of radical formation and migration in proton translocation is discussed.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Tirosina/química , Animales , Bovinos , Transporte Iónico , Modelos Moleculares , Oxidación-Reducción , Protones , Teoría Cuántica
18.
Biochim Biophys Acta ; 1817(4): 666-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22138627

RESUMEN

Cytochrome ba(3) (ba(3)) of Thermus thermophilus (T. thermophilus) is a member of the heme-copper oxidase family, which has a binuclear catalytic center comprised of a heme (heme a(3)) and a copper (Cu(B)). The heme-copper oxidases generally catalyze the four electron reduction of molecular oxygen in a sequence involving several intermediates. We have investigated the reaction of the fully reduced ba(3) with O(2) using stopped-flow techniques. Transient visible absorption spectra indicated that a fraction of the enzyme decayed to the oxidized state within the dead time (~1ms) of the stopped-flow instrument, while the remaining amount was in a reduced state that decayed slowly (k=400s(-1)) to the oxidized state without accumulation of detectable intermediates. Furthermore, no accumulation of intermediate species at 1ms was detected in time resolved resonance Raman measurements of the reaction. These findings suggest that O(2) binds rapidly to heme a(3) in one fraction of the enzyme and progresses to the oxidized state. In the other fraction of the enzyme, O(2) binds transiently to a trap, likely Cu(B), prior to its migration to heme a(3) for the oxidative reaction, highlighting the critical role of Cu(B) in regulating the oxygen reaction kinetics in the oxidase superfamily.


Asunto(s)
Proteínas Bacterianas/metabolismo , Grupo Citocromo b/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Thermus thermophilus/enzimología , Proteínas Bacterianas/química , Cobre/química , Cobre/metabolismo , Grupo Citocromo b/química , Complejo IV de Transporte de Electrones/química , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/análogos & derivados , Hemo/química , Hemo/metabolismo , Hierro/química , Hierro/metabolismo , Cinética , Modelos Biológicos , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Unión Proteica , Espectrometría Raman , Thermus thermophilus/metabolismo , Factores de Tiempo
19.
Biochim Biophys Acta ; 1807(10): 1295-304, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21718686

RESUMEN

The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50µs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50µs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Peróxidos/metabolismo , Animales , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Sitios de Unión , Biocatálisis , Bovinos , Cobre/química , Cobre/metabolismo , Ditionita/química , Ditionita/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Radicales Libres/química , Radicales Libres/metabolismo , Hemo/química , Hemo/metabolismo , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Oxígeno/química , Peróxidos/química , Unión Proteica , Protones , Tirosina/química , Tirosina/metabolismo
20.
Biochim Biophys Acta ; 1807(10): 1342-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21684251

RESUMEN

Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Escherichia coli/genética , Ácido Glutámico/genética , Mutación , Oxidorreductasas/genética , Rhodobacter sphaeroides/genética , Dominio Catalítico/genética , Cobre/química , Cobre/metabolismo , Grupo Citocromo b , Citocromos/metabolismo , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Hemo/análogos & derivados , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica , Protones , Rhodobacter sphaeroides/enzimología , Especificidad de la Especie , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...