Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Commun ; 15(1): 4259, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769334

RESUMEN

Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.


Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Aprendizaje Automático , ARN Largo no Codificante , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/virología , COVID-19/genética , Masculino , Femenino , Anciano , ARN Largo no Codificante/genética , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Europa (Continente)/epidemiología , Canadá/epidemiología , Estudios de Cohortes , Anciano de 80 o más Años , Adulto
2.
Artículo en Inglés | MEDLINE | ID: mdl-38324627

RESUMEN

RATIONALE: Pseudomonas aeruginosa (P.a.) is the major bacterial pathogen colonizing the airways of adult cystic fibrosis (CF) patients and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evades the immune system and antibiotic therapy. While the ability of P.a. to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. OBJECTIVES: To detect and characterize intracellular P.a. in CF airway epithelium from human lung explant tissues. METHODS: We sampled the lung explant tissues from CF patients undergoing lung transplantation and non-CF lung donor control. We analyzed lung tissue sections for the presence of intracellular P.a. by quantitative culture and microscopy, in parallel to histopathology and airway morphometry. MEASUREMENTS AND MAIN RESULTS: P.a. was isolated from the lungs of 7 CF patients undergoing lung transplantation. Microscopic assessment revealed the presence of intracellular P.a. within airway epithelial cells in 3 out of the 7 patients analyzed, at a varying but low frequency. We observed those events occurring in lung regions with high bacterial burden. CONCLUSION: This is the first study describing the presence of intracellular P.a. in CF lung tissues. While intracellular P.a. in airway epithelial cells are likely relatively rare events, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.

3.
Vascul Pharmacol ; 154: 107250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043758

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been at the forefront of health sciences research since its emergence in China in 2019 that quickly led to a global pandemic. As a result of this research, and the large numbers of infected patients globally, there were rapid enhancements made in our understanding of Coronavirus disease 2019 (COVID-19) pathology, including its role in the development of uncontrolled immune responses and its link to the development of endotheliitis and endothelial dysfunction. There were also some noted differences in the rate and severity of infection between males and females with acute COVID. Some individuals infected with SARS-CoV-2 also experience long-COVID, an important hallmark symptom of this being Myalgic Encephalomyelitis-Chronic Fatigue Syndrome (ME-CFS), also experienced differently between males and females. The purpose of this review is to discuss the impact of sex on the vasculature during acute and long COVID-19, present any link between ME-CFS and endothelial dysfunction, and provide evidence for the relationship between ME-CFS and the immune system. We also will delineate biological sex differences observed in other post viral infections and, assess if sex differences exist in how the immune system responds to viral infection causing ME-CFS.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Enfermedades Vasculares , Humanos , Femenino , Masculino , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Síndrome de Fatiga Crónica/epidemiología , Caracteres Sexuales
4.
Clin Proteomics ; 20(1): 44, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875801

RESUMEN

The quest for understanding and managing the long-term effects of COVID-19, often referred to as Long COVID or post-COVID-19 condition (PCC), remains an active research area. Recent findings highlighted angiopoietin-1 (ANG-1) and p-selectin (P-SEL) as potential diagnostic markers, but validation is essential, given the inconsistency in COVID-19 biomarker studies. Leveraging the biobanque québécoise de la COVID-19 (BQC19) biobank, we analyzed the data of 249 participants. Both ANG-1 and P-SEL levels were significantly higher in patients with PCC participants compared with control subjects at 3 months using the Mann-Whitney U test. We managed to reproduce and validate the findings, emphasizing the importance of collaborative biobanking efforts in enhancing the reproducibility and credibility of Long COVID research outcomes.

5.
Am J Rhinol Allergy ; 37(6): 638-645, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37475202

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a multifactorial disease with no known single cause, but it is thought that bacteria play a role in the disease process. OBJECTIVE: This pilot study aims to assess the longitudinal effect of corticosteroid therapy on sinus microbiota in chronic rhinosinusitis patients with nasal polyposis (CRSwNP). METHODS: A longitudinal prospective case-control study was done on patients with CRSwNP and healthy controls. Patients with CRSwNP were randomly allocated to a corticosteroids and antibiotics treatment group (CRSwNP-SA) or a corticosteroid-only treatment group (CRSwNP-S). Data were collected at three-time points (before treatment, 1, and 3 months after treatment). Specimens were cultured and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) was used as a bacterial detection method. RESULTS: Data from 29 patients with CRSwNP (16 CRSwNP-SA and 13 CRSwNP-S) was compared to 15 healthy subjects. Patients reported significant symptom improvement initially (1 month), but not in the long-term (3 months). This result was found in both treatment groups, whether or not antibiotics were used. After 3 months from treatment, the prevalence of Corynebacterium genera tended to increase in the CRSwNP-SA, while Staphylococcus and Gram-negative genera (Pseudomonas) tended to increase in the CRSwNP-S. Smoking, aspirin sensitivity, and previous endoscopic sinus surgery were found to be co-factors significantly associated with the response to systemic corticosteroid therapy. CONCLUSION: In this pilot study, both treatment options were effective to improve symptoms in the short-term but not in the long-term, and were not linked to any clear sinus microbiota response. As a result, this study supports the avoidance of systemic antibiotics without evidence of active infection.


Asunto(s)
Microbiota , Pólipos Nasales , Rinitis , Sinusitis , Humanos , Estudios de Casos y Controles , Proyectos Piloto , Rinitis/complicaciones , Sinusitis/complicaciones , Corticoesteroides/uso terapéutico , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/complicaciones , Enfermedad Crónica , Antibacterianos/uso terapéutico
7.
Clin Exp Metastasis ; 39(2): 323-333, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34767138

RESUMEN

Surgical resection, the cornerstone of curative intent treatment for gastric adenocarcinoma, is associated with a high rate of infection-related post-operative complications, leading to an increased incidence of metastasis to the peritoneum. However, the mechanisms underlying this process are poorly understood. Lipopolysaccharide (LPS), an antigen from Gram-negative bacteria, represents a potential mechanism via induction of local and systemic inflammation through activation of Toll-like receptor (TLR). Here, we use both a novel ex vivo model of peritoneal metastasis and in vivo animal models to assess gastric cancer cell adhesion to peritoneum both before and after inhibition of the TLR4 pathway. We demonstrate that activation of TLR4 by either LPS or Gram-negative bacteria (E. coli) significantly increases the adherence of gastric cancer cells to human peritoneal mesothelial cells, and that this increased adherence is abrogated by inhibition of the TLR4 signal cascade and downstream TAK1 and MEK1/2 pathways. We also demonstrate that the influence of LPS on adherence extends to peritoneal tissue and metastatic spread. Furthermore, we show that loss of TLR4 at the site of metastasis reduces tumor cell adhesion, implicating the TLR4 signaling cascade in potentiating metastatic adhesion and peritoneal spread. These results identify potential therapeutic targets for the clinical management of patients undergoing resection for gastric cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Peritoneales , Neoplasias Gástricas , Animales , Escherichia coli/metabolismo , Humanos , Lipopolisacáridos/farmacología , Peritoneo , Receptor Toll-Like 4/metabolismo
8.
Sci Rep ; 11(1): 23928, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907210

RESUMEN

Identification of transcriptional regulatory mechanisms and signaling networks involved in the response of host cells to infection by SARS-CoV-2 is a powerful approach that provides a systems biology view of gene expression programs involved in COVID-19 and may enable the identification of novel therapeutic targets and strategies to mitigate the impact of this disease. In this study, our goal was to identify a transcriptional regulatory network that is associated with gene expression changes between samples infected by SARS-CoV-2 and those that are infected by other respiratory viruses to narrow the results on those enriched or specific to SARS-CoV-2. We combined a series of recently developed computational tools to identify transcriptional regulatory mechanisms involved in the response of epithelial cells to infection by SARS-CoV-2, and particularly regulatory mechanisms that are specific to this virus when compared to other viruses. In addition, using network-guided analyses, we identified kinases associated with this network. The results identified pathways associated with regulation of inflammation (MAPK14) and immunity (BTK, MBX) that may contribute to exacerbate organ damage linked with complications of COVID-19. The regulatory network identified herein reflects a combination of known hits and novel candidate pathways supporting the novel computational pipeline presented herein to quickly narrow down promising avenues of investigation when facing an emerging and novel disease such as COVID-19.


Asunto(s)
COVID-19/genética , Perfilación de la Expresión Génica/métodos , SARS-CoV-2/patogenicidad , Análisis de Secuencia de ARN/métodos , Células A549 , Línea Celular , Células Epiteliales/química , Células Epiteliales/citología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Biología de Sistemas
9.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34845903

RESUMEN

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/metabolismo , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amycolatopsis/enzimología , Amycolatopsis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Liasas de Carbono-Carbono/genética , Dominio Catalítico/genética , Secuencia Conservada , Cristalografía por Rayos X , Estabilidad de Enzimas/genética , Evolución Molecular , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
10.
Anal Bioanal Chem ; 413(20): 5135-5146, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34173039

RESUMEN

Drug safety assessment in the early phases of drug discovery is critical to facilitate the rapid development of novel therapeutics. Recently, teleost zebrafish (Danio rerio) has emerged as a promising vertebrate model for the assessment of drug safety. Zebrafish is a convenient model because of its small size, high fecundity, embryo transparency, and ex utero development. In this study, we developed a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) method applied to zebrafish larvae to investigate safety and metabolism of sahaquine (Sq), an anticancer agent inhibiting histone deacetylase 6. This technique improves on prior studies using liquid chromatography-mass spectrometry (LC-MS) by adding analysis of the drug spatial distribution. Using this method, it was determined that Sq dissolved in fish water (1-2000 µM) did not reach the larval body and was mainly distributed throughout the yolk. High Sq concentration (800 µM) administered intravenously allowed the compound to reach the larval body but did not induce phenotypic abnormalities. Sq was metabolized into its glucuronidated form within 24 h and was excreted within 72 h. MALDI MSI was instrumental in showing that Sq-glucuronide was mainly formed in the gut and slightly in yolk syncytial layer, and provided valuable insights into xenobiotics elimination in zebrafish larvae. This study indicates that Sq has a good safety profile and merits further investigations in other disease models. In addition, the optimized MALDI MSI protocol provided here can be widely applied to study distribution and metabolic fate of other structurally related molecules.


Asunto(s)
Espectrometría de Masas/métodos , Animales , Línea Celular Tumoral , Embrión no Mamífero/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pez Cebra
11.
PLoS One ; 16(5): e0245031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010280

RESUMEN

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Asunto(s)
Bancos de Muestras Biológicas/organización & administración , COVID-19/patología , COVID-19/epidemiología , COVID-19/genética , COVID-19/metabolismo , Humanos , Difusión de la Información/métodos , Pandemias , Quebec/epidemiología , SARS-CoV-2/aislamiento & purificación
12.
PLoS Pathog ; 17(3): e1009375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690714

RESUMEN

Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.


Asunto(s)
Fibrosis Quística/complicaciones , Neumonía/microbiología , Pseudomonas aeruginosa/patogenicidad , Sistema Respiratorio/parasitología , Animales , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Ratones , Neumonía/complicaciones , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistema Respiratorio/metabolismo , Transactivadores/genética
13.
PLoS Comput Biol ; 17(3): e1008810, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684134

RESUMEN

Abnormal coagulation and an increased risk of thrombosis are features of severe COVID-19, with parallels proposed with hemophagocytic lymphohistiocytosis (HLH), a life-threating condition associated with hyperinflammation. The presence of HLH was described in severely ill patients during the H1N1 influenza epidemic, presenting with pulmonary vascular thrombosis. We tested the hypothesis that genes causing primary HLH regulate pathways linking pulmonary thromboembolism to the presence of SARS-CoV-2 using novel network-informed computational algorithms. This approach led to the identification of Neutrophils Extracellular Traps (NETs) as plausible mediators of vascular thrombosis in severe COVID-19 in children and adults. Taken together, the network-informed analysis led us to propose the following model: the release of NETs in response to inflammatory signals acting in concert with SARS-CoV-2 damage the endothelium and direct platelet-activation promoting abnormal coagulation leading to serious complications of COVID-19. The underlying hypothesis is that genetic and/or environmental conditions that favor the release of NETs may predispose individuals to thrombotic complications of COVID-19 due to an increase risk of abnormal coagulation. This would be a common pathogenic mechanism in conditions including autoimmune/infectious diseases, hematologic and metabolic disorders.


Asunto(s)
COVID-19/complicaciones , COVID-19/genética , Trampas Extracelulares/genética , Linfohistiocitosis Hemofagocítica/complicaciones , Linfohistiocitosis Hemofagocítica/genética , Modelos Biológicos , SARS-CoV-2/genética , Trombosis/etiología , Trombosis/genética , Algoritmos , Degranulación de la Célula/genética , Biología Computacional , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Pandemias , Mapas de Interacción de Proteínas , Embolia Pulmonar/etiología , Embolia Pulmonar/genética , Proteínas Virales/genética
14.
Nat Commun ; 11(1): 6092, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257709

RESUMEN

The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using 13C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.


Asunto(s)
Antibacterianos/farmacología , Diarilquinolinas/farmacología , Glucólisis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Ciclo del Carbono/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glioxilatos , Mycobacterium tuberculosis/genética , Fosforilación Oxidativa , Tuberculosis/microbiología
15.
Am J Respir Cell Mol Biol ; 63(5): 707-709, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32857620
16.
J Law Biosci ; 7(1): lsaa020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32728465

RESUMEN

Effective responses to the COVID-19 pandemic require novel solutions for research and responsible data sharing. Biobanking presents itself as a key priority in furthering our understanding of COVID-19. In this article, we propose a tripartite approach to consent to create resources for research relating to COVID-19. The approach aims to link three levels of participation: COVID-19 patients, respiratory/infectious disease patients, and longitudinal study participants. We explore the potential approaches that can be taken to consent processes with these three participant groups. We furthermore describe an access model for both single-site and multi-site data and sample storage. Through dealing with these topics at a high level, the model may be adapted to local legal and ethical requirements while still pursuing its ultimate goal: the creation of a research infrastructure that supports transparent, strong, and open science.

17.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302401

RESUMEN

Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10-15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils-the ability to form neutrophil extracellular traps (NETs)-may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Trampas Extracelulares , Enfermedades Pulmonares , Neutrófilos/patología , Neumonía Viral/patología , COVID-19 , Infecciones por Coronavirus/complicaciones , Citocinas/metabolismo , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2
18.
J Immunol ; 204(8): 2285-2294, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32169849

RESUMEN

Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.


Asunto(s)
Antígenos CD/metabolismo , Antígeno Carcinoembrionario/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , Células A549 , Animales , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Células HT29 , Humanos , Ratones , Neutrófilos/patología
19.
Protein Cell ; 11(3): 187-201, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31956962

RESUMEN

While emerging data suggest nucleotide oligomerization domain receptor 1 (NOD1), a cytoplasmic pattern recognition receptor, may play an important and complementary role in the immune response to bacterial infection, its role in cancer metastasis is entirely unknown. Hence, we sought to determine the effects of NOD1 on metastasis. NOD1 expression in paired human primary colon cancer, human and murine colon cancer cells were determined using immunohistochemistry and immunoblotting (WB). Clinical significance of NOD1 was assessed using TCGA survival data. A series of in vitro and in vivo functional assays, including adhesion, migration, and metastasis, was conducted to assess the effect of NOD1. C12-iE-DAP, a highly selective NOD1 ligand derived from gram-negative bacteria, was used to activate NOD1. ML130, a specific NOD1 inhibitor, was used to block C12-iE-DAP stimulation. Stable knockdown (KD) of NOD1 in human colon cancer cells (HT29) was constructed with shRNA lentiviral transduction and the functional assays were thus repeated. Lastly, the predominant signaling pathway of NOD1-activation was identified using WB and functional assays in the presence of specific kinase inhibitors. Our data demonstrate that NOD1 is highly expressed in human colorectal cancer (CRC) and human and murine CRC cell lines. Clinically, we demonstrate that this increased NOD1 expression negatively impacts survival in patients with CRC. Subsequently, we identify NOD1 activation by C12-iE-DAP augments CRC cell adhesion, migration and metastasis. These effects are predominantly mediated via the p38 mitogen activated protein kinase (MAPK) pathway. This is the first study implicating NOD1 in cancer metastasis, and thus identifying this receptor as a putative therapeutic target.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias del Colon/metabolismo , Proteína Adaptadora de Señalización NOD1/fisiología , Adenocarcinoma/patología , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Neoplasias del Colon/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
J Thorac Oncol ; 14(12): 2097-2108, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31382038

RESUMEN

INTRODUCTION: Surgery is essential for cure of early-stage non-small cell lung cancer (NSCLC). Rates of postoperative bacterial pneumonias, however, remain high, and clinical data suggests that post-operative infectious complications confer an increased risk for metastasis. Toll-like receptors (TLRs) mediate the inflammatory response to infection by recognizing evolutionarily conserved bacterial structures at the surface of numerous pulmonary cell types; yet, little is known about how host TLR activation influences NSCLC metastasis. TLR4 recognizes gram-negative bacterium lipopolysaccharide activating the innate immune system. METHODS: C57BL/6 and TLR4 knockout murine airways were inoculated with Escherichia coli or lipopolysaccharide. Hepatic metastasis assays and intravital microscopy were performed. Bronchoepithelial conditioned media was generated through coincubation of bronchoepithelial cells with TLR4 activating Escherichia coli or lipopolysaccharide. Subsequently, H59 NSCLC were stimulated with conditioned media and subject to various adhesion assays. RESULTS: We demonstrate that gram-negative Escherichia coli pneumonia augments the formation of murine H59 NSCLC liver metastases in C57BL/6 mice through TLR4 activation. Additionally, infected C57BL/6 mice demonstrate increased H59 NSCLC in vivo hepatic sinusoidal adhesion compared with negative controls, a response that is significantly diminished in TLR4 knockout mice. Similarly, intratracheal injection of purified TLR4 activating lipopolysaccharide increases in vivo adhesion of H59 cells to murine hepatic sinusoids. Furthermore, H59 cells incubated with bronchoepithelial conditioned medium show increased cell adhesion to in vitro extracellular matrix proteins and in vivo hepatic sinusoids through a mechanism dependent on bronchoepithelial TLR4 activation and interleukin-6 secretion. CONCLUSION: TLR4 is a viable therapeutic target for NSCLC metastasis augmented by gram-negative pneumonia.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/microbiología , Infecciones por Escherichia coli/patología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/microbiología , Neumonía Bacteriana/patología , Receptor Toll-Like 4/metabolismo , Animales , Bronquios/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Células Epiteliales/patología , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...