Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 16(2): e2003127, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29389974

RESUMEN

During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Ciclo Celular/genética , Neuronas Motoras/citología , Neurogénesis/genética , Factor de Transcripción 2 de los Oligodendrocitos/fisiología , Proteínas Represoras/fisiología , Análisis de la Célula Individual , Factor de Transcripción HES-1/fisiología , Transcriptoma , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Colorantes Fluorescentes/metabolismo , Regulación de la Expresión Génica/fisiología , Genes Reporteros , Interneuronas/citología , Ratones Transgénicos , Factor de Transcripción 2 de los Oligodendrocitos/genética , Receptores Notch/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Transducción de Señal , Factor de Transcripción HES-1/genética
2.
PLoS One ; 12(7): e0180091, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753612

RESUMEN

The retina communicates with the brain using ≥30 parallel channels, each carried by axons of distinct types of retinal ganglion cells. In every mammalian retina one finds so-called "alpha" ganglion cells (αRGCs), identified by their large cell bodies, stout axons, wide and mono-stratified dendritic fields, and high levels of neurofilament protein. In the mouse, three αRGC types have been described based on responses to light steps: On-sustained, Off-sustained, and Off-transient. Here we employed a transgenic mouse line that labels αRGCs in the live retina, allowing systematic targeted recordings. We characterize the three known types and identify a fourth, with On-transient responses. All four αRGC types share basic aspects of visual signaling, including a large receptive field center, a weak antagonistic surround, and absence of any direction selectivity. They also share a distinctive waveform of the action potential, faster than that of other RGC types. Morphologically, they differ in the level of dendritic stratification within the IPL, which accounts for their response properties. Molecularly, each type has a distinct signature. A comparison across mammals suggests a common theme, in which four large-bodied ganglion cell types split the visual signal into four channels arranged symmetrically with respect to polarity and kinetics.


Asunto(s)
Retina/citología , Células Ganglionares de la Retina/metabolismo , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Dendritas/metabolismo , Electrofisiología , Femenino , Integrasas/metabolismo , Cinética , Masculino , Ratones , Canales de Potasio con Entrada de Voltaje/metabolismo , Vías Visuales/fisiología
3.
Cell Rep ; 15(9): 1930-44, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27210758

RESUMEN

Visual information is conveyed to the brain by axons of >30 retinal ganglion cell (RGC) types. Characterization of these types is a prerequisite to understanding visual perception. Here, we identify a family of RGCs that we call F-RGCs on the basis of expression of the transcription factor Foxp2. Intersectional expression of Foxp1 and Brn3 transcription factors divides F-RGCs into four types, comprising two pairs, each composed of closely related cells. One pair, F-mini(ON) and F-mini(OFF), shows robust direction selectivity. They are among the smallest RGCs in the mouse retina. The other pair, F-midi(ON) and F-midi(OFF), is larger and not direction selective. Together, F-RGCs comprise >20% of RGCs in the mouse retina, halving the number that remain to be classified and doubling the number of known direction-selective cells. Co-expression of Foxp and Brn3 genes also marks subsets of RGCs in macaques that could be primate homologs of F-RGCs.


Asunto(s)
Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Anisotropía , Axones/metabolismo , Encéfalo/citología , Recuento de Células , Forma de la Célula , Tamaño de la Célula , Factores de Transcripción Forkhead/metabolismo , Macaca , Ratones , Proteínas Represoras/metabolismo , Vías Visuales/metabolismo
4.
Nat Commun ; 6: 6778, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25868900

RESUMEN

Spinal motor neurons (MNs) control diverse motor tasks including respiration, posture and locomotion that are disrupted by neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Methods directing MN differentiation from stem cells have been developed to enable disease modelling in vitro. However, most protocols produce only a limited subset of endogenous MN subtypes. Here we demonstrate that limb-innervating lateral motor column (LMC) MNs can be efficiently generated from mouse and human embryonic stem cells through manipulation of the transcription factor Foxp1. Foxp1-programmed MNs exhibit features of medial and lateral LMC MNs including expression of specific motor pool markers and axon guidance receptors. Importantly, they preferentially project axons towards limb muscle explants in vitro and distal limb muscles in vivo upon transplantation-hallmarks of bona fide LMC MNs. These results present an effective approach for generating specific MN populations from stem cells for studying MN development and disease.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neuronas Motoras/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Axones/metabolismo , Axones/ultraestructura , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Miembro Anterior/citología , Miembro Anterior/inervación , Miembro Anterior/metabolismo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Miembro Posterior/citología , Miembro Posterior/inervación , Miembro Posterior/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/ultraestructura , Músculo Esquelético/citología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Proteínas Represoras/genética , Retinal-Deshidrogenasa , Transducción de Señal , Médula Espinal/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Development ; 139(17): 3109-19, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22833130

RESUMEN

During development, spinal motoneurons (MNs) diversify into a variety of subtypes that are specifically dedicated to the motor control of particular sets of skeletal muscles or visceral organs. MN diversification depends on the coordinated action of several transcriptional regulators including the LIM-HD factor Isl1, which is crucial for MN survival and fate determination. However, how these regulators cooperate to establish each MN subtype remains poorly understood. Here, using phenotypic analyses of single or compound mutant mouse embryos combined with gain-of-function experiments in chick embryonic spinal cord, we demonstrate that the transcriptional activators of the Onecut family critically regulate MN subtype diversification during spinal cord development. We provide evidence that Onecut factors directly stimulate Isl1 expression in specific MN subtypes and are therefore required to maintain Isl1 production at the time of MN diversification. In the absence of Onecut factors, we observed major alterations in MN fate decision characterized by the conversion of somatic to visceral MNs at the thoracic levels of the spinal cord and of medial to lateral MNs in the motor columns that innervate the limbs. Furthermore, we identify Sip1 (Zeb2) as a novel developmental regulator of visceral MN differentiation. Taken together, these data elucidate a comprehensive model wherein Onecut factors control multiple aspects of MN subtype diversification. They also shed light on the late roles of Isl1 in MN fate decision.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas con Homeodominio LIM/metabolismo , Neuronas Motoras/fisiología , Factores de Transcripción Onecut/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Electroporación , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Ratones
6.
Neuron ; 74(2): 314-30, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22542185

RESUMEN

Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.


Asunto(s)
Tipificación del Cuerpo/genética , Cadherinas/metabolismo , Sistema Nervioso Central/citología , Factores de Transcripción Forkhead/metabolismo , Células Neuroepiteliales/fisiología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adhesión Celular/genética , Diferenciación Celular/genética , Sistema Nervioso Central/enzimología , Embrión de Pollo , Electroporación , Embrión de Mamíferos , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/metabolismo
7.
PLoS Biol ; 8(8): e1000446, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20711475

RESUMEN

Topographic neuronal maps arise as a consequence of axon trajectory choice correlated with the localisation of neuronal soma, but the identity of the pathways coordinating these processes is unknown. We addressed this question in the context of the myotopic map formed by limb muscles innervated by spinal lateral motor column (LMC) motor axons where the Eph receptor signals specifying growth cone trajectory are restricted by Foxp1 and Lhx1 transcription factors. We show that the localisation of LMC neuron cell bodies can be dissociated from axon trajectory choice by either the loss or gain of function of the Reelin signalling pathway. The response of LMC motor neurons to Reelin is gated by Foxp1- and Lhx1-mediated regulation of expression of the critical Reelin signalling intermediate Dab1. Together, these observations point to identical transcription factors that control motor axon guidance and soma migration and reveal the molecular hierarchy of myotopic organisation.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal , Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Extremidades/inervación , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Proteínas Represoras/genética , Serina Endopeptidasas/genética , Médula Espinal/metabolismo , Factores de Transcripción
8.
Neuron ; 59(2): 226-40, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18667151

RESUMEN

The formation of locomotor circuits depends on the spatially organized generation of motor columns that innervate distinct muscle and autonomic nervous system targets along the body axis. Within each spinal segment, multiple motor neuron classes arise from a common progenitor population; however, the mechanisms underlying their diversification remain poorly understood. Here, we show that the Forkhead domain transcription factor Foxp1 plays a critical role in defining the columnar identity of motor neurons at each axial position. Using genetic manipulations, we demonstrate that Foxp1 establishes the pattern of LIM-HD protein expression and accordingly organizes motor axon projections, their connectivity with peripheral targets, and the establishment of motor pools. These functions of Foxp1 act in accordance with the rostrocaudal pattern provided by Hox proteins along the length of the spinal cord, suggesting a model by which motor neuron diversity is achieved through the coordinated actions of Foxp1 and Hox proteins.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Proteínas de Homeodominio/fisiología , Neuronas Motoras/metabolismo , Proteínas Represoras/fisiología , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Diferenciación Celular/fisiología , Pollos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Embarazo , Médula Espinal/citología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...