Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15800, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215930

RESUMEN

The rising unpredictability in the food supply chain in many parts of the world is related to soil loss and poor agricultural output. The Revised Universal Soil Loss Equation (RUSLE), widely used for estimating soil loss, was applied in the western mid-hills in Nepal, with steep slopes and fragile geology. This region is at high risk for rapid soil erosion and mass wasting. To estimate soil loss, this study utilized the RUSLE model with experimental erosion plots in the Aadhikhola and Tinahukhola watersheds, capturing real-time erosion in the field. The annual soil loss for the Aadhikhola watershed is estimated at ∼41.4 tons ha-1 yr-1. In contrast, in the Tinahukhola watershed, soil loss is low (∼24.1 tons ha-1 yr-1). Although annual rainfall showed an increasing trend in both watersheds, the change in soil loss was statistically insignificant. The high erosion rates from the experimental plots in both watersheds support the model outputs. Results from the experimental plots recorded the rate of soil erosion for different land use as: irrigated agricultural land > rainfed agricultural land > forests. The trends highlight the role of human activities in enhancing soil erosion in these mountainous terrains in terms of medium to long-term perspectives. Therefore, sustainable agriculture practices in these terrains must investigate alternate ways to decrease soil erosion to support people's livelihoods.

2.
Int J Phytoremediation ; 25(2): 172-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35522852

RESUMEN

For a long time, water hyacinth has been considered a very stubborn and troublesome weed. However, research has shown that it can be used to remove many pollutants from water. Among the different pollutants, potentially toxic elements (PTE) or their ions have been found to be very toxic for humans, animals, and plants. Among the many conventional methods for removing PTE from wastewaters, phytoremediation has several advantages. This method is highly eco-friendly, cost-effective, and can remove a wide range of metal pollutants and organic pollutants. Both, living and non-living water hyacinth plants, can be used for remediation - either entirely or their parts. Study on mechanisms and different factors involved in the process would help to effectively use water hyacinth for remediation. This review presents different studies conducted in the past thirty years for the removal of PTEs. Detailed analysis of the work done in this field showed that in spite of the main advantages provided by the plant, not much has been done to increase the efficiency of the remediation process and for reusing the water hyacinth biomass for other applications after desorption of the PTE. Hence, the section on scope for future work highlights these prospective ideas. Novelty statement: Water hyacinth, which is a very stubborn weed and has a negative impact on the environment, can be constructively used to remove potentially toxic elements (PTEs) along with other pollutants from wastewaters. Different parts of the water hyacinth plant like roots, leaves, and stems or the entire plant can be used. Further, either the live plant or its other forms, such as dried powder, biochar, or activated carbon can be used. This review focuses on different forms of water hyacinth plant used, the advantages and limitations associated with these methods and the scope for future work.


Asunto(s)
Eichhornia , Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Humanos , Aguas Residuales , Biodegradación Ambiental , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 835: 155425, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489498

RESUMEN

Lake Victoria, a lifeline for millions of people in East Africa, is affected by anthropogenic activities resulting in eutrophication and impacting the aquatic life and water quality. Therefore, understanding the ongoing changes in the catchment is critical for its restoration. In this context, catchment and lake sediments are important archives in tracing nutrient inputs and their dominant sources to establish causality with human activities and productivity shifts. In this study, we determine the 1) changes in concentrations of total organic carbon (TOC), black carbon (BC), total nitrogen (TN), C/N ratio, and phosphorous (P) fractions in catchment sediments and the open lake, 2) distribution of diatom population in the lake, and 3) land use and land cover changes in the catchment. The distribution of TOC, BC, TN, C/N, and P correlate while showing spatial and temporal variations. In particular, the steady increase in BC confirms atmospheric inputs from anthropogenic activities in the catchment. However, lake sediments show more variations than catchment-derived sediments in geochemical trends. Notably, the catchment has undergone dramatic land use changes since the 1960s (post-independence). This change is most evident in satellite records from 1985 to 2014, which indicate accelerated human activities. For example, urban growth (666-1022%) and agricultural expansion (23-48%) increased sharply at the expense of a decline in forest cover, grassland, and woodlands in the catchment. Cities like Kisumu and Homa Bay expanded, coinciding with rapid population growth and urbanization. Consequently, nutrient inputs have increased since the 1960s, and this change corresponds with the divergence of diatom communities in the lake. In addition, the transition to Nitzschia and cyanobacteria mark increasing cultural eutrophication in the lake. The geochemical trends and statistical data support our inference(s) and provide insights into urban development and agriculture practices, which propelled increased nutrients from the catchment and productivity shifts in the lake.


Asunto(s)
Diatomeas , Lagos , Carbono/análisis , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Humanos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
4.
Environ Geochem Health ; 43(11): 4415-4440, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33876342

RESUMEN

Metal contamination from base metal sulphide mines is a major environmental challenge that poses many ecological and health risks. We examined the metal concentrations in the Dabaoshan mine in South China in water, sediments, and aquatic organisms and their specific characteristics (i.e. size, body tissue, species, and habitat) along the Hengshi and Wengjiang River courses to assess acid mine drainage remediation efforts. Metal concentrations of arsenic, cadmium, chromium, copper, lead, nickel, thallium, and zinc were examined in tissues (i.e. gills, intestines, and muscles) of 17 freshwater species of fish, shrimps, and crabs. Metals in tissues followed the trend: intestines > gills > muscles; nearly all intestine samples exceeded the safe limits of metals analysed in this study. There is a positive correlation between distance from the mine and metal concentrations related to the flow of surface water and the habitat of aquatic organisms. The concentrations of arsenic, copper, and zinc were the highest in aquatic organisms, and the distribution was influenced by physical (distance from mine, currents, and seasonality), chemical (pH and competing ions), and biological (species, habitat, and predator-prey relation) factors. Large demersal fish and benthic fauna had higher concentrations of metals. Bioaccumulation and biomagnification of metals, as well as the high metal pollution index and target hazard quotient (arsenic, cadmium, copper, lead, thallium, and zinc), occurred in bottom feeders (C. aumtus, X. argentea) and fish belonging to higher trophic levels (P. fulvidraco, O. mossambicus). Lead and cadmium indicated the highest level of biomagnification from prey to predator. Health risks exist from the dietary intake of common aquatic species such as tilapia and carp besides crustaceans due to high arsenic, cadmium, lead, and thallium levels. Further reduction of metals is necessary to improve the effects of acid mine drainage in the catchment.


Asunto(s)
Carpas , Metales Pesados , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Sci Total Environ ; 724: 138122, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32408435

RESUMEN

Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.

6.
Artículo en Inglés | MEDLINE | ID: mdl-31846394

RESUMEN

Groundwater-sourced drinking water quality in South Asia, specifically India, is extremely stressed, mostly from the presence of many pervasive and geogenic pollutants. The presence and behavior of anthropogenic pollutants like polycyclic aromatic hydrocarbons (PAHs) are poorly investigated on a regional or basin-wide scale. The present study provides one of the first documentation of the presence and behavior of PAH in the aquifer sediments in the Ganges river basin. Lower and medium molecular weight PAHs, e.g., naphthalene, phenanthrene, and fluoranthene were detected in 79, 36, and 13% of samples (n = 25). The PAH level in groundwater was approximately five times lower than river water. The sorption behavior of PAHs were studied in experiments in presence/absence of organic carbon and by simulating advective transport of low to medium molecular weight PAHs, e.g., naphthalene, phenanthrene, and fluoranthene in aquifer sediments collected from agricultural, peri-urban, and urban areas. Naphthalene and phenanthrene adsorbed on quartz and kaolinite, but not on clay minerals like kaolinite. Fluoranthene adsorbed more favorably on kaolinite. Numerical modeling of the advective transport of PAHs in aquifers suggest up to 25 times faster movement of pollutants from irrigation-induced pumping, indicating the strong control of hydraulics on the spatial distribution of PAHs in subsurface.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua Subterránea/química , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , India
7.
Environ Monit Assess ; 190(6): 336, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29744600

RESUMEN

Spatial and temporal distribution of trace metals and their cycling is a key issue for understanding the ongoing biogeochemical processes in coastal environments. Sediment cores were collected from six different sampling locations from the Rufiji delta mangrove forests in southeastern coastal Tanzania that are perceived to be impacted by urban development and agricultural activities in the catchment, and pollution in upstream sections of the Rufiji River. The chronology and sediment accumulation rates at these sampling sites were derived based on the distribution of 210Pbexcess method. The trace metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were sequentially extracted as per the BCR method and analyzed. The results indicate that the mass accumulation rates range from 0.40 g cm-2 year-1 (cores NR3 and NR4) to 1.75 g cm-2 year-1 (core SR1). Trace metals in the cores are mainly associated with the residual phase and their abundances in sediments are ranked as Cr > Zn > Ni > Cu > Pb > Cd. The results imply that trace metals in the Rufiji delta mangroves are mainly of crustal origin, and they are less sensitive to weathering. Further, these metals are least available for uptake by plants and they pose limited threat to the biota.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Metales Pesados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Agricultura , Biota , Tanzanía , Humedales
8.
Microbiologyopen ; 7(5): e00594, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29577673

RESUMEN

Elevated levels of arsenic (As) in aquifers of South East Asia have caused diverse health problems affecting millions of people who drink As-rich groundwater and consume various contaminated agriculture products. The biogeochemical cycling and mobilization/immobilization of As from its mineral-bound phase is controlled by pH, oxic/anoxic conditions, and different microbial processes. The increased As flux generated from ongoing biogeochemical processes in the subsurface in turn affects the in situ microbial communities. This study analyzes how the indigenous arsenite-oxidizing bacteria combat As stress by various biophysical alterations and self-adaptation mechanisms. Fifteen arsenite-oxidizing bacterial strains were isolated and identified using a polyphasic approach. The bacterial strains isolated from these aquifers belong predominantly to arsenite-oxidizing bacterial groups. Of these, the membrane-bound phospholipid fatty acids (PLFA) were characterized in seven selected bacterial isolates grown at different concentrations of As(III) in the medium. One of the significant findings of this study is how the increase in external stress can induce alteration of membrane PLFAs. The change in fatty acid saturation and alteration of their steric conformation suggests alteration of membrane fluidity due to change in As-related stress. However, different bacterial groups can have different degrees of alteration that can affect sustainability in As-rich aquifers of the Bengal Delta Plain.


Asunto(s)
Arsenitos/metabolismo , Arsenitos/toxicidad , Bacterias/efectos de los fármacos , Agua Subterránea/microbiología , Lípidos de la Membrana/metabolismo , Adaptación Fisiológica , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Oxidación-Reducción , Fosfolípidos/metabolismo
9.
Sci Rep ; 8(1): 5386, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599428

RESUMEN

High-resolution paleoclimate data on stable isotopes in a stalagmite were coupled to glycerol dialkyl glycerol tetraethers (GDGTs). The Indian Summer Monsoon (ISM) transitioned from limited rainfall during the Last Glacial Maximum (LGM) to intense precipitation during early Holocene (22 to 6 ka). This was associated with changes in stalagmite growth, abundance of branched (br) and isoprenoid (iso) GDGTs, as well as δ18O, δ13C, Sr/Ca and GDGT-derived signals providing both temperature and moisture information. The reconstructed mean annual air temperature (MAAT) of the most modern stalagmite sample at ~19 °C, matches the surface and cave MAAT, but was ~4 °C lower during LGM. Warming at the end of LGM occurred before ISM strengthened and indicate 6 ka lag consistent with sea surface temperature records. The isotope records during the Younger Dryas show rapid progressions to dry conditions and weak monsoons, but these shifts are not coupled to TEX86. Moreover, change to wetter and stronger ISM, along with warmer Holocene conditions are not continuous indicating a decoupling of local temperatures from ISM.

10.
Front Microbiol ; 5: 602, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484877

RESUMEN

High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of indigenous bacterial communities BDP wells that can play important role in biogeochemical cycling of elements including As.

11.
Environ Monit Assess ; 185(10): 8197-213, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23519846

RESUMEN

The geochemistry of coastal sediments of southern India was altered after the tsunami in 2004. A five-step sequential extraction procedure was applied to assess the effects of tsunami on mobility and redistribution of selected elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Ten surface sediments and three cores were analyzed for different metal fractions (exchangeable, carbonate, reduced, oxidized, and residual). Total metal concentrations increased in mangrove sediments after the tsunami, but their spatial distribution did not show significant variation (except Mn). The sediments were mixed by the tsunami, and there was lack of variation in metal concentrations in different fractions with depth (except Pb and Mn). High concentrations of Pb and Zn occurred in the oxide fractions, whereas Cu, Cr, Cd, and Ni were high in the organic and sulfide-rich fractions. Metals in the residual fraction (lattice bound) had the highest concentration suggesting their non-availability and limited biological uptake in the system. Most of the metals (except Mn) do not constitute a risk based on the different geochemical indices.


Asunto(s)
Sedimentos Geológicos/química , Metales/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Monitoreo del Ambiente , India , Tsunamis
12.
Sci Total Environ ; 407(8): 2783-95, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19157511

RESUMEN

Sattal a small mountainous lake in the Kumaun Himalayas has been impacted by various cultural activities in recent years. We explored the effects of human-induced changes in this lake by using various geochemical proxies. Shifts in TOC and N flux, C/N ratio, stable isotopes (delta13C and delta(15)N), n-alkane, and pigment concentrations in sediments indicate a steady increase in primary productivity over the last few decades. The trophic status of the lake has changed from mesotrophic to eutrophic condition. The C/N, CPI, and TAR based ratios in sediments indicate accumulation of algal matter derived primarily from in situ production, with limited input of terrestrial organic matter from the watershed. The low (between 0.1 and 1 per thousand) delta15N values imply N2-fixation by cyanobacteria, and the decrease in delta13C values up-core represent the effect of sewage input and land based runoff, or possible contribution from microbial biomass. The pigments change from non-N2 fixing cyanobacterial species to the N2-fixing community, and are consistent with the proxy-based productivity shifts inferred in the lake. The deeper sediments are affected by post-diagenetic changes causing an increase in delta13C (and possibly delta15N) due to mineralization of organic C and N.


Asunto(s)
Sedimentos Geológicos/química , Biomarcadores/análisis , Carbono/análisis , Cianobacterias/metabolismo , Eucariontes/crecimiento & desarrollo , India , Radioisótopos de Plomo , Nitrógeno/análisis , Fijación del Nitrógeno , Oxígeno/análisis , Pigmentos Biológicos/análisis
13.
Sci Total Environ ; 379(2-3): 216-25, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17064754

RESUMEN

Weathering of mine tailings in Adak results in high As concentrations in surface and ground water, sediments, and soil. In spite of the oxic conditions, As-rich surface and ground water samples indicate As(III) species predominantly (up to 83%). Several microorganisms were isolated from the enrichment cultures that were involved in As cycling. Amongst them was Arsenicicoccus bolidensis - a novel gram-positive, facultatively anaerobic, coccus-shaped actinomycete, which actively reduced As(V) to As(III) in aqueous media. A. bolidensis reduced 0.06-0.20 mM day(-1) As(V). As(V) reduction displays a direct correlation between the initial As(V) concentration, growth rate, and biomass yield.


Asunto(s)
Actinomycetales/metabolismo , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Actinomycetales/genética , Actinomycetales/crecimiento & desarrollo , Arsénico/análisis , Secuencia de Bases , Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Minería , Datos de Secuencia Molecular , Oxidación-Reducción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Ríos/química , Análisis de Secuencia de ADN , Contaminantes del Suelo/análisis , Sulfuros , Suecia , Contaminantes Químicos del Agua/análisis
14.
Int J Syst Evol Microbiol ; 54(Pt 2): 605-608, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15023982

RESUMEN

An unknown Gram-positive, catalase-positive, facultatively anaerobic, non-spore-forming, coccus-shaped bacterium originating from sediment was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a cell-wall murein based on LL-diaminopimelic acid (type LL-Dpm-glycine(1)), a complex mixture of saturated, monounsaturated and iso- and anteiso-methyl-branched, non-hydroxylated, long-chain cellular fatty acids and tetrahydrogenated menaquinones with eight isoprene units [MK-8(H(4))] as the major respiratory lipoquinone. This combination of characteristics somewhat resembled members of the suborder Micrococcineae, but did not correspond to any currently described species. Comparative 16S rRNA gene sequencing confirmed that the unidentified coccus-shaped organism is a member of the Actinobacteria and represents a hitherto-unknown subline related to, albeit different from, a number of taxa including Intrasporangium, Janibacter, Terrabacter, Terracoccus and Ornithinicoccus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium originating from lake sediment be classified as a new genus and species, Arsenicicoccus bolidensis gen. nov., sp. nov. (type strain CCUG 47306(T)=DSM 15745(T)).


Asunto(s)
Actinomycetales/aislamiento & purificación , Actinomycetales/clasificación , Actinomycetales/genética , Actinomycetales/fisiología , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/fisiología , Datos de Secuencia Molecular , Fenotipo , Filogenia , Contaminación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...