Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine ; 54: 102711, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813236

RESUMEN

For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética
2.
Sci Immunol ; 8(88): eadg7015, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37191508

RESUMEN

Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Animales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Macaca mulatta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoglobulina G
3.
Microb Pathog ; 168: 105512, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35381324

RESUMEN

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches. AIM: To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. METHODS: Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry. RESULTS: The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. CONCLUSION: This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Internalización del Virus
4.
Sci Immunol ; 7(72): eabo0226, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35357886

RESUMEN

SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.


Asunto(s)
COVID-19 , Hepatitis D , Vaccinia , Vacunas Virales , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Macaca mulatta , Ratones , Nucleocápside/metabolismo , SARS-CoV-2 , Virus Vaccinia/metabolismo
5.
Biomed Pharmacother ; 146: 112555, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954639

RESUMEN

Human exposure to radiation has expanded considerably in recent years, due to a wide range of medical, agricultural, and industrial applications. Despite its beneficial utilities, radiation is also known to have a deleterious effect on cells and tissues, largely through the creation of free radicals, which cause severe damage to biological systems through processes such as DNA double/single-strand fragmentation, protein modification, and upregulation of lipid peroxidation pathways. In addition, radiation damages genetic material while inducing hereditary genotoxicity. Developing measures to counter radiation-induced damage is thus considered to be of significant importance. Considering the inherent capability of plants to survive radiative conditions, certain plants and natural compounds have been the subject of investigations to explore and harness their natural radioprotective abilities. Podophyllum hexandrum, an Indian medicinal plant with several known traditional phytotherapeutic uses, is considered in particular to be of immense therapeutic importance. Recent studies have been conducted to validate its radioprotective potential alongside discovering its protective mechanisms following γ-radiation-induced mortality and disorder in both mice and human cells. These findings show that Podophyllum and its constituents/natural compounds protect the lungs, gastrointestinal tissues, hemopoietic system, and testis by inducing DNA repair pathways, apoptosis inhibition, free radical scavenging, metal chelation, anti-oxidation and anti-inflammatory mechanisms. In this review, we have provided an updated, comprehensive summary of ionizing radiations and their impacts on biological systems, highlighting the mechanistic and radioprotective role of natural compounds from Podophyllum hexandrum.


Asunto(s)
Berberidaceae , Extractos Vegetales/farmacología , Protectores contra Radiación/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Reparación del ADN/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo , Dosis Máxima Tolerada , Medicina Tradicional , Mitocondrias/efectos de los fármacos , Protectores contra Radiación/química
6.
Nat Commun ; 12(1): 3587, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117252

RESUMEN

There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1µg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Ácidos Esteáricos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/administración & dosificación , Modelos Animales de Enfermedad , Compuestos Heterocíclicos con 3 Anillos/inmunología , Humanos , Macaca mulatta , Ratones , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Ácidos Esteáricos/inmunología
7.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631118

RESUMEN

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Orden Génico , Inmunofenotipificación , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunación/métodos , Vacunas de ADN/genética
8.
Cells ; 9(9)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932813

RESUMEN

The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Tretinoina/metabolismo , Carga Viral/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Haplorrinos , Humanos , Replicación Viral/efectos de los fármacos
9.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640124

RESUMEN

Zika virus (ZIKV) is a global public health issue due to its association with severe developmental disorders in infants and neurological disorders in adults. ZIKV uses glycosylation of its envelope (E) protein to interact with host cell receptors to facilitate entry; these interactions could also be important for designing therapeutics and vaccines. Due to a lack of proper information about Asn-linked (N-glycans) on ZIKV E, we analyzed ZIKV E of various strains derived from different cells. We found ZIKV E proteins being extensively modified with oligomannose, hybrid and complex N-glycans of a highly heterogeneous nature. Host cell surface glycans correlated strongly with the glycomic features of ZIKV E. Mechanistically, we observed that ZIKV N-glycans might play a role in viral pathogenesis, as mannose-specific C-type lectins DC-SIGN and L-SIGN mediate host cell entry of ZIKV. Our findings represent the first detailed mapping of N-glycans on ZIKV E of various strains and their functional significance.


Asunto(s)
Proteínas del Envoltorio Viral/química , Infección por el Virus Zika/virología , Virus Zika/fisiología , Virus Zika/patogenicidad , Animales , Chlorocebus aethiops , Glicosilación , Interacciones Microbiota-Huesped , Humanos , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Células THP-1 , Células Vero , Internalización del Virus , Virus Zika/metabolismo
10.
Mol Pharm ; 15(9): 4284-4295, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30040423

RESUMEN

The Zika virus (ZIKV) is primarily transmitted via an infected mosquito bite, during sexual intercourse, or in utero mother to child transmission. When a fetus is infected, both neurological malformations and deficits in brain development are frequently manifested. As such, there is a need for vaccines or drugs that may be used to cure ZIKV infections. Metabolic pathways play a crucial role in cell differentiation and development. More importantly, polyamines play a key role in replication and translation of several RNA viruses, including ZIKV, Dengue virus, and Chikungunya virus. Here, we present polyamine analogues (BENSpm and PG11047) and their corresponding polymer prodrug derivatives for inhibiting ZIKV infection by intersecting with polyamine catabolism pathways. We tested the compounds against ZIKV African (MR766) and Asian (PRVABC59) strains in human kidney epithelial (Vero) and glioblastoma derived (SNB-19) cell lines. Our results demonstrate potent inhibition of ZIKV viral replication in both cell lines tested. This antiviral effect was mediated by the upregulation of two polyamine catabolic enzymes, spermine oxidase, and spermidine (SMOX)/spermine N1-acetyltransferase (SAT1) as apparent reduction of the ZIKV infection following heterologous expression of SMOX and SAT1. On the basis of these observations, we infer potential use of these polyamine analogues to treat ZIKV infections.


Asunto(s)
Poliaminas/metabolismo , Polímeros/farmacología , Profármacos/farmacología , Animales , Línea Celular Tumoral , Virus Chikungunya/efectos de los fármacos , Chlorocebus aethiops , Humanos , Polímeros/química , Profármacos/química , Células Vero , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos
11.
J Neuroimmune Pharmacol ; 12(2): 219-232, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28349242

RESUMEN

The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has been determined through its major surface envelope glycoprotein. It has been known that oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-pathogen interactions to better understand ZIKV pathogenesis.


Asunto(s)
Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Oligosacáridos/metabolismo , Infección por el Virus Zika/metabolismo , Virus Zika/metabolismo , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicoproteínas/inmunología , Humanos , Oligosacáridos/inmunología , Replicación Viral/fisiología , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...