Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 6: 7622, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205423

RESUMEN

The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na(+) ions are released, followed by the binding and occlusion of two K(+) ions. While the mechanisms of Na(+) release have been well characterized by the study of transient Na(+) currents, smaller and faster transient currents mediated by external K(+) have been more difficult to study. Here we show that external K(+) ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K(+) gating different from that of Na(+) occlusion.


Asunto(s)
Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Decapodiformes , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA