Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 11(8): 1305-1321, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30151042

RESUMEN

Functional connectivity, quantified using landscape genetics, can inform conservation through the identification of factors linking genetic structure to landscape mechanisms. We used breeding habitat metrics, landscape attributes, and indices of grouse abundance, to compare fit between structural connectivity and genetic differentiation within five long-established Sage-Grouse Management Zones (MZ) I-V using microsatellite genotypes from 6,844 greater sage-grouse (Centrocercus urophasianus) collected across their 10.7 million-km2 range. We estimated structural connectivity using a circuit theory-based approach where we built resistance surfaces using thresholds dividing the landscape into "habitat" and "nonhabitat" and nodes were clusters of sage-grouse leks (where feather samples were collected using noninvasive techniques). As hypothesized, MZ-specific habitat metrics were the best predictors of differentiation. To our surprise, inclusion of grouse abundance-corrected indices did not greatly improve model fit in most MZs. Functional connectivity of breeding habitat was reduced when probability of lek occurrence dropped below 0.25 (MZs I, IV) and 0.5 (II), thresholds lower than those previously identified as required for the formation of breeding leks, which suggests that individuals are willing to travel through undesirable habitat. The individual MZ landscape results suggested terrain roughness and steepness shaped functional connectivity across all MZs. Across respective MZs, sagebrush availability (<10%-30%; II, IV, V), tree canopy cover (>10%; I, II, IV), and cultivation (>25%; I, II, IV, V) each reduced movement beyond their respective thresholds. Model validations confirmed variation in predictive ability across MZs with top resistance surfaces better predicting gene flow than geographic distance alone, especially in cases of low and high differentiation among lek groups. The resultant resistance maps we produced spatially depict the strength and redundancy of range-wide gene flow and can help direct conservation actions to maintain and restore functional connectivity for sage-grouse.

2.
Ecol Evol ; 8(11): 5394-5412, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938061

RESUMEN

Genetic networks can characterize complex genetic relationships among groups of individuals, which can be used to rank nodes most important to the overall connectivity of the system. Ranking allows scarce resources to be guided toward nodes integral to connectivity. The greater sage-grouse (Centrocercus urophasianus) is a species of conservation concern that breeds on spatially discrete leks that must remain connected by genetic exchange for population persistence. We genotyped 5,950 individuals from 1,200 greater sage-grouse leks distributed across the entire species' geographic range. We found a small-world network composed of 458 nodes connected by 14,481 edges. This network was composed of hubs-that is, nodes facilitating gene flow across the network-and spokes-that is, nodes where connectivity is served by hubs. It is within these hubs that the greatest genetic diversity was housed. Using indices of network centrality, we identified hub nodes of greatest conservation importance. We also identified keystone nodes with elevated centrality despite low local population size. Hub and keystone nodes were found across the entire species' contiguous range, although nodes with elevated importance to network-wide connectivity were found more central: especially in northeastern, central, and southwestern Wyoming and eastern Idaho. Nodes among which genes are most readily exchanged were mostly located in Montana and northern Wyoming, as well as Utah and eastern Nevada. The loss of hub or keystone nodes could lead to the disintegration of the network into smaller, isolated subnetworks. Protecting both hub nodes and keystone nodes will conserve genetic diversity and should maintain network connections to ensure a resilient and viable population over time. Our analysis shows that network models can be used to model gene flow, offering insights into its pattern and process, with application to prioritizing landscapes for conservation.

3.
Oecologia ; 185(4): 687-698, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29052009

RESUMEN

Periodic changes in abundance, or population cycles, are common in a variety of species and is one of the most widely studied ecological phenomena. The strength of, and synchrony between population cycles can vary across time and space and understanding these patterns can provide insight into the mechanisms generating population cycles and their variability within and among species. Here, we used wavelet and spectral analysis on a range-wide dataset of abundance for the greater sage-grouse (Centrocercus urophasianus) to test for regional differences in temporal cyclicity. Overall, we found that most populations (11 of 15) were cyclic at some point in a 50-year time series (1965-2015), but the patterns varied over both time and space. Several peripheral populations demonstrated amplitude dampening or loss of cyclicity following population lows in the mid-1990s. Populations through the core of the range in the Great and Wyoming Basins had more consistent cyclic dynamics, but period length appeared to shorten from 10-12 to 6-8 years. In one time period, where cyclicity was greatest overall, increased pairwise population synchrony was correlated with cycle intensity. Our work represents a comprehensive range-wide assessment of cyclic dynamics and revealed substantial variation in temporal and spatial trends of cyclic dynamics across populations.


Asunto(s)
Conservación de los Recursos Naturales , Galliformes/fisiología , Animales , Dinámica Poblacional , Factores de Tiempo , Estados Unidos
4.
Ecol Evol ; 7(11): 3751-3761, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616172

RESUMEN

Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

5.
PLoS One ; 12(5): e0176706, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28505173

RESUMEN

Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species.


Asunto(s)
Biodiversidad , Clima , Ecosistema , Taiga , Cambio Climático , Conservación de los Recursos Naturales , Geografía , Modelos Teóricos , Ontario , Quebec , Árboles
6.
Ecol Evol ; 7(9): 3281-3294, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28480025

RESUMEN

Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin-like growth factor-1 (IGF-1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF-1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF-1 locus of insular lynx.

7.
Genomics ; 108(5-6): 232-240, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27732888

RESUMEN

A potential cause of amphibian population declines are the impacts of environmental degradation on tadpole development. We conducted RNA sequencing on developing northern leopard frog tadpoles and through de novo transcriptome assembly we annotated a large number of open reading frames comparable in number and extent to genes identified in Xenopus. Using our transcriptome, we found transcript level changes between early (Gosner 26-31) and late (Gosner 36-41) stage tadpoles were the greatest in the tail, which is reabsorbed throughout development. There was an up-regulation of immunity genes in both the head and tail of the late tadpoles and a down-regulation of genes associated with the energy pathways of the mitochondria and the production of myosin. Overall, transcript level changes across development were consistent with studies on Xenopus and our findings highlight the broader utility of using RNA-seq to identify genes differentially expressed throughout development and in response to environmental pressures.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ranidae/genética , Transcriptoma , Animales , Larva/genética , Larva/metabolismo , Especificidad de Órganos , Ranidae/crecimiento & desarrollo
8.
Mol Ecol ; 25(18): 4424-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27483196

RESUMEN

The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.


Asunto(s)
Distribución Animal , Galliformes/genética , Genética de Población , Animales , Teorema de Bayes , Conservación de los Recursos Naturales , Dinámica Poblacional , Wyoming
9.
Ecol Evol ; 5(10): 1955-69, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26045948

RESUMEN

Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high- and low-quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage-grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low-quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33-km-diameter moving windows were preferred, suggesting small-scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow.

10.
J Anim Ecol ; 83(4): 800-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24438480

RESUMEN

Determining the causes of cyclic fluctuations in population size is a central tenet in population ecology and provides insights into population regulatory mechanisms. We have a firm understanding of how direct and delayed density dependence affects population stability and cyclic dynamics, but there remains considerable uncertainty in the specific processes contributing to demographic variability and consequent change in cyclic propensity. Spatiotemporal variability in cyclic propensity, including recent attenuation or loss of cyclicity among several temperate populations and the implications of habitat fragmentation and climate change on this pattern, highlights the heightened need to understand processes underlying cyclic variation. Because these stressors can differentially impact survival and productivity and thereby impose variable time delays in density dependence, there is a specific need to elucidate how demographic vital rates interact with the type and action of density dependence to contribute to population stability and cyclic variation. Here, we address this knowledge gap by comparing the stability of time series derived from general and species-specific (Canada lynx: Lynx canadensis; small rodents: Microtus, Lemmus and Clethrionomys spp.) matrix population models, which vary in their demographic rates and the direct action of density dependence. Our results reveal that density dependence acting exclusively on survival as opposed to productivity is destabilizing, suggesting that a shift in the action of population regulation toward reproductive output may decrease cyclic propensity and cycle amplitude. This result was the same whether delayed density dependence was pulsatile and acted on a single time period (e.g. t-1, t-2 or t-3) vs. more constant by affecting a successive range of years (e.g. t-1,…, t-3). Consistent with our general models, reductions in reproductive potential in both the lynx and small rodent systems led to notably large drops in cyclic propensity and amplitude, suggesting that changes in this vital rate may contribute to the spatial or temporal variability observed in the cyclic dynamics of both systems. Collectively, our results reveal that the type of density dependence and its effect on different demographic parameters can profoundly influence numeric stability and cyclic propensity and therefore may shift populations across the cyclic-to-noncyclic boundary.


Asunto(s)
Arvicolinae/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Lynx/fisiología , Modelos Biológicos , Animales , Femenino , Cadena Alimentaria , Masculino , Periodicidad , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
11.
Glob Chang Biol ; 20(7): 2076-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24415466

RESUMEN

Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns.


Asunto(s)
Distribución Animal , Cambio Climático , Interacción Gen-Ambiente , Variación Genética , Lynx/fisiología , Animales , Canadá , Lynx/genética , Modelos Biológicos , Densidad de Población , Estaciones del Año , Nieve
12.
Ecol Evol ; 2(1): 19-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22408723

RESUMEN

Despite ethical arguments against lethal control of wildlife populations, culling is routinely used for the management of predators, invasive or pest species, and infectious diseases. Here, we demonstrate that culling of wildlife can have unforeseen impacts that can be detrimental to future conservation efforts. Specifically, we analyzed genetic data from eastern wolves (Canis lycaon) sampled in Algonquin Provincial Park (APP), Ontario, Canada from 1964 to 2007. Research culls in 1964 and 1965 killed the majority of wolves within a study region of APP, accounting for approximately 36% of the park's wolf population at a time when coyotes were colonizing the region. The culls were followed by a significant decrease in an eastern wolf mitochondrial DNA (mtDNA) haplotype (C1) in the Park's wolf population, as well as an increase in coyote mitochondrial and nuclear DNA. The introgression of nuclear DNA from coyotes, however, appears to have been curtailed by legislation that extended wolf protection outside park boundaries in 2001, although eastern wolf mtDNA haplotype C1 continued to decline and is now rare within the park population. We conclude that the wolf culls transformed the genetic composition of this unique eastern wolf population by facilitating coyote introgression. These results demonstrate that intense localized harvest of a seemingly abundant species can lead to unexpected hybridization events that encumber future conservation efforts. Ultimately, researchers need to contemplate not only the ethics of research methods, but also that future implications may be obscured by gaps in our current scientific understanding.

13.
Mol Ecol ; 19(23): 5157-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20977510

RESUMEN

Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for predicting impacts of landscape alterations. Information on dispersal patterns, however, is lacking for many taxa, particularly reptiles. Eastern foxsnakes (Mintoinus gloydi) are marsh and prairie specialists that avoid agricultural fields, but they have persisted across a fragmented region in southwestern Ontario and northern Ohio. Here, we combined habitat suitability modelling with population genetic analyses to infer how foxsnakes disperse through a habitat mosaic of natural and altered landscape features. Boundary regions between the eight genetic clusters, identified through assignment tests, were comprised of low suitability habitat (e.g. agricultural fields). Island populations were grouped into a single genetic cluster, and comparatively low F(ST) values between island and mainland populations suggest open water presents less of a barrier than nonsuitable terrestrial habitat. Isolation by resistance and least-cost path analysis produced similar results with matrices of pairwise individual genetic distance significantly more correlated to matrices of resistance values derived from habitat suitability than models with an undifferentiated landscape. Spatial autocorrelation results matched better with assignment results when incorporating resistance values rather than straight-line distances. All analyses used in our study produced similar results suggesting that habitat degradation limits dispersal for foxsnakes, which has had a strong effect on the genetic population structure across this region.


Asunto(s)
Ecosistema , Genética de Población , Serpientes/genética , Animales , Análisis por Conglomerados , Repeticiones de Microsatélite , Modelos Biológicos , Ohio , Ontario , Dinámica Poblacional , Análisis de Secuencia de ADN
14.
Mol Ecol Resour ; 8(5): 965-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21585942

RESUMEN

New statistical techniques and software have improved our ability to quantify fine-scale population structure. We isolated 11 microsatellite markers for eastern foxsnakes (Elaphe gloydi) and surveyed the variability of each using 115-136 individuals from one population in southwestern Ontario. We determined that all loci were variable and conformed to Hardy-Weinberg expectations and that no locus demonstrated linkage disequilibrium. We are using these markers to quantify the scale of gene flow, and to assess the effect of variable landscapes on connectivity and genetic diversity of three disjunct regional populations in the northern portion of the species' range.

15.
Oecologia ; 148(1): 1-11, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16425042

RESUMEN

We investigated the link between thermal quality and the effectiveness of thermoregulation in milk snakes in a thermally challenging environment. We defined thermoregulatory effectiveness as the extent to which an individual maintains its body temperature (Tb) closer to the preferred range (Tset) than allowed by the thermal quality of its environment. We defined thermal quality as the magnitude of the difference between operative environmental temperatures (Te) and Tset. Because ectotherms regulate body temperatures through choice of habitat and behavioural adjustments, we also examined the link between thermoregulation, habitat use and behaviour. During 2003-2004, we located 25 individuals 890 times, and recorded their Tb. Thermal quality was lower in the spring and fall than in the summer, and was lower in forests than in open habitats. Milk snakes thermoregulated more effectively in the spring than in the summer and fall, and more effectively in the forest than in open habitats. Milk snakes had a strong preference for open habitats in all seasons, which was likely to facilitate behavioural thermoregulation. The preference for open habitats was equally strong in all seasons and, therefore, the higher effectiveness of thermoregulation was not a result of altered habitat use. Instead, milk snakes modified their behaviour and were seen basking more and moved less in the spring than in the summer.


Asunto(s)
Conducta Animal/fisiología , Regulación de la Temperatura Corporal/fisiología , Ecosistema , Serpientes/fisiología , Animales , Femenino , Masculino , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...