Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 596(12): 1533-1543, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353903

RESUMEN

Cyanobacteria employ two-component sensor-response regulator systems to monitor and respond to environmental challenges. The response regulators RpaA, RpaB, Rre1 and RppA are integral to circadian clock function and abiotic stress acclimation in cyanobacteria. RpaA, RpaB and Rre1 are known to interact with ferredoxin or thioredoxin, raising the possibility of their thiol regulation. Here, we report that Synechocystis sp. PCC 6803 Rre1, RpaA and RpaB exist as higher-order oligomers under oxidising conditions and that reduced thioredoxin A converts them to monomers. We further show that these response regulators contain redox-responsive cysteine residues with an Em7 around -300 mV. These findings suggest a direct thiol modulation of the activity of these response regulators, independent of their cognate sensor kinases.


Asunto(s)
Synechocystis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Oxidación-Reducción , Compuestos de Sulfhidrilo , Synechocystis/genética , Synechocystis/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
J Biosci Bioeng ; 131(5): 491-500, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33610455

RESUMEN

Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO2 tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution. In two parallel experiments that lasted over 8400 h of culturing and 100 serial passages, S. elongatus PCC 11801 was evolved to tolerate 5 g/L n-butanol or 30 g/L 2,3-butanediol representing a 100% improvement in concentrations tolerated. The evolved strains retained alcohol tolerance even after being passaged several times without the alcohol stress suggesting that the changes were permanent. Whole genome sequencing of the n-butanol evolved strains revealed mutations in a number of stress responsive genes encoding translation initiation factors, RpoB and an ABC transporter. In 2,3-butanediol evolved strains, genes for ClpC, a different ABC transporter, glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase were found to be mutated. Furthermore, the evolved strains showed significant improvement in tolerance toward several other alcohols. Notably, the n-butanol evolved strain could tolerate up to 32 g/L ethanol, thereby making it a promising host for photosynthetic production of biofuels via metabolic engineering.


Asunto(s)
Evolución Molecular Dirigida , Solventes/farmacología , Synechococcus/efectos de los fármacos , Synechococcus/genética , Alcoholes/farmacología , Biocombustibles , Dióxido de Carbono/metabolismo , Fotosíntesis/efectos de los fármacos , Synechococcus/metabolismo
3.
ChemElectroChem ; 6(21): 5375-5386, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31867153

RESUMEN

Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.5 W m-2 and the powering of small electrical devices such as a digital clock have been reported. Improvements in standardisation have meant that this biophotoelectrochemical phenomenon can be further exploited to address biological questions relating to the organisms. Here, we aim to provide both biologists and electrochemists with a review of the progress of BPV development with a focus on biological materials, electrode design and interfacial wiring considerations, and propose steps for driving the field forward.

4.
Protist ; 170(4): 358-373, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31415953

RESUMEN

The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/genética , Genoma de Protozoos/genética , Plastidios/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Genómica
5.
Methods Mol Biol ; 1770: 335-346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29978412

RESUMEN

Biophotovoltaic methods rely on the fact that photosynthetic microorganisms, like many others, can export small amounts of electric current. For photosynthetic organisms, this current usually increases on illumination. This "exoelectrogenic" property may be of biotechnological interest, and may also provide useful experimental insights into the physiological status of the cell. We describe how to construct biophotovoltaic devices, and the kinds of measurements that are typically made.


Asunto(s)
Biotecnología , Cianobacterias/fisiología , Electroquímica , Fotosíntesis , Biotecnología/instrumentación , Biotecnología/métodos , Electroquímica/instrumentación , Electroquímica/métodos , Metabolismo Energético
6.
Biochem Soc Trans ; 40(6): 1302-7, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23176472

RESUMEN

A large variety of new energy-generating technologies are being developed in an effort to reduce global dependence on fossil fuels, and to reduce the carbon footprint of energy generation. The term 'biological photovoltaic system' encompasses a broad range of technologies which all employ biological material that can harness light energy to split water, and then transfer the resulting electrons to an anode for power generation or electrosynthesis. The use of whole cyanobacterial cells is a good compromise between the requirements of the biological material to be simply organized and transfer electrons efficiently to the anode, and also to be robust and able to self-assemble and self-repair. The principle that photosynthetic bacteria can generate and transfer electrons directly or indirectly to an anode has been demonstrated by a number of groups, although the power output obtained from these devices is too low for biological photovoltaic devices to be useful outside the laboratory. Understanding how photosynthetically generated electrons are transferred through and out of the organism is key to improving power output, and investigations on this aspect of the technology are the main focus of the present review.


Asunto(s)
Cianobacterias/metabolismo , Fuentes de Energía Bioeléctrica , Cianobacterias/fisiología , Transporte de Electrón , Oxidación-Reducción , Fotosíntesis
7.
Phys Chem Chem Phys ; 14(35): 12221-9, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22864466

RESUMEN

Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Cianobacterias/fisiología , Biopelículas , Electrodos , Diseño de Equipo , Luz , Fotosíntesis , Energía Solar , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA