Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 25(12): 3996-4007, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31386782

RESUMEN

Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio-temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an 'intrinsic property' to SOM persistence as an 'ecosystem interaction'. We present a soil profile, or pedon-explicit, ecosystem-scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem-scale drivers are integrated with pedon-scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above- and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics-improved representation of plant-derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage-and how this can be combined with robust and efficient soil monitoring.


Asunto(s)
Ecosistema , Suelo , Carbono , Clima , Plantas
2.
Sci Total Environ ; 618: 1199-1209, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28954703

RESUMEN

Reactive nitrogen (N) deposition can affect many ecosystem processes, particularly in oligotrophic habitats, and is expected to affect soil C storage potential through increases in microbial decomposition rate as a consequence of greater N availability. Increased N availability may also result in changes in the principal limitations on ecosystem productivity. Phosphorus (P) limitation may constrain productivity in instances of high N deposition, yet ecosystem responses to P availability are poorly understood. This study investigated CO2 and CH4 flux responses to N and P enrichment using both short- (1year) and long-term (16year) nutrient addition experiments. We hypothesised that the addition of either N or P will increase CO2 and CH4 fluxes, since both plant production and microbial activity are likely to increase with alleviation from nutrient limitation. This study demonstrated the modification of C fluxes from N and P enrichment, with differing results subject to the duration of nutrient addition. On average, relative to control, the addition of N alone inhibited CO2 flux in the short-term (-9%) but considerably increased CO2 emissions in the long-term (+35%), reduced CH4 uptake in the short term (-90%) and reduced CH4 emission in the long term (-94%). Phosphorus addition increased CO2 and CH4 emission in the short term (+20% and +184% respectively), with diminishing effect into the long term, suggesting microbial communities at these sites are P limited. Whilst a full C exchange budget was not examined in the experiment, the potential for soil C storage loss with long-term nutrient enrichment is demonstrated and indicates that P addition, where P is a limiting factor, may have an adverse influence on upland soil C content.

3.
Sci Total Environ ; 593-594: 688-694, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28366869

RESUMEN

Reactive nitrogen (N) deposition can affect ecosystem processes, particularly in oligotrophic upland habitats. Phosphorus (P) addition has been proposed to reduce the effects of N enrichment on N leaching and acidification, since P limitation can reduce biomass production and consequent sequestration of reactive N. However, biodiversity is often reduced in more productive ecosystems and P limitation may protect against this effect. Responses to P availability in instances of high N deposition are poorly understood. This study investigated the ecosystem response to alleviation of P limitation, using a long-term nutrient addition experiment (1996-2012) three years after ceasing N inputs and 15years after a single P application. Substantial differences were observed in the structure and composition of vegetation species and above-ground vegetation biomass. Vegetation height was greater in the N+P addition treatments (+38% cf. control), with increased cryptogam cover (+47%), whereas N addition increased graminoid species cover (+68%). Vegetation diversity was significantly reduced by the addition of P (-21%), indicating that P limitation is likely to be an important mechanism that limits biodiversity loss in upland habitats exposed to chronic N deposition. Significant differences in soil C and N contents were also observed between treatments. Relative to control, the addition of N increased soil C (+11%) and N (+11%) pool sizes, whereas the addition of N and P reduced soil C (-12%) and N (-13%) pool sizes. This demonstrated the importance of P availability for upland ecosystem processes, and highlights the long-term effects of P addition on vegetation species composition and C storage. Thus, the addition of P cannot be endorsed as a method for reducing impacts of N deposition. Capsule: Phosphorus limitation is a major mechanism governing ecosystem processes in situations of high atmospheric nitrogen deposition.

4.
PLoS One ; 11(8): e0161085, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557277

RESUMEN

Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as 'positive indicator-species' (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialists' assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts.


Asunto(s)
Contaminación del Aire/análisis , Ecosistema , Monitoreo del Ambiente , Algoritmos , Conservación de los Recursos Naturales , Monitoreo del Ambiente/legislación & jurisprudencia , Monitoreo del Ambiente/métodos , Femenino , Humanos , Masculino , Modelos Teóricos , Investigación Cualitativa , Encuestas y Cuestionarios
5.
Environ Pollut ; 156(3): 636-43, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18653264

RESUMEN

Nitrate (NO3-) is often observed in surface waters draining terrestrial ecosystems that remain strongly nitrogen (N) limited. It has been suggested that this occurs due to hydrological bypassing of soil or vegetation N retention, particularly during high flows. To test this hypothesis, artificial rain events were applied to 12 replicate soil blocks on a Welsh podzolic acid grassland hillslope, labelled with 15N-enriched NO3- and a conservative bromide (Br-) tracer. On average, 31% of tracer-labelled water was recovered within 4 h, mostly as mineral horizon lateral flow, indicating rapid vertical water transfer through the organic horizon via preferential flowpaths. However, on average only 6% of 15N-labelled NO3- was recovered. Around 80% of added NO3- was thus rapidly immobilised, probably by microbial communities present on the surfaces of preferential flowpaths. Transitory exceedance of microbial N-uptake capacity during periods of high water and N flux may therefore provide a mechanism for NO3- leaching.


Asunto(s)
Lluvia Ácida , Nitratos/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Adsorción , Bromuros/análisis , Ecología/instrumentación , Ecología/métodos , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Estaciones del Año , Compuestos de Sodio/análisis , Microbiología del Suelo , Árboles , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 155(2): 201-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18207619

RESUMEN

Increased plant productivity due to nitrogen pollution increases the strength of the global carbon sink, but is implicated in plant diversity loss. However, modelling and experimental studies have suggested that these effects are constrained by availability of other nutrients. In a survey of element concentrations in Calluna vulgaris across an N deposition gradient in the UK, shoot concentrations of N and more surprisingly phosphorus and potassium were positively correlated with N deposition; tissue N/P ratio even decreased with N deposition. Elevated P and K concentrations possibly resulted from improved acquisition due to additional enzyme production or mycorrhizal activity. Heather occurs on organic soils where nutrient limitations are likely due to availability constraints rather than small stocks. However, if this effect extends to other plant and soil types, effects of N deposition on C sinks and plant competition may not be as constrained by availability of other nutrients as previously proposed.


Asunto(s)
Calluna/metabolismo , Nitrógeno/farmacología , Fósforo/análisis , Potasio/análisis , Contaminantes del Suelo/farmacología , Calluna/efectos de los fármacos , Calluna/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Fósforo/metabolismo , Brotes de la Planta/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Potasio/metabolismo , Suelo/análisis , Reino Unido
7.
Tree Physiol ; 26(12): 1529-35, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17169892

RESUMEN

Trees in cropped fields may improve nitrogen (N) use efficiency by intercepting leached N, but crop yield will be reduced if the trees compete strongly with crops for N. Ideal trees for intercropping will take up N from deeper soil layers not accessed by the crop species. Spatiotemporal aspects of tree nitrogen capture niches were investigated within a hedgerow intercropping system by placing 15N at three depths and monitoring 15N uptake by trees pruned either 25 or 4 days before application of 15N. Trees with contrasting rooting patterns (Gliricidia sepium L. and Peltophorum dasyrrachis (Miq.) Kurz) were grown in mixed hedgerows and intercropped with maize (Zea mays L.). Neither species showed significant N uptake during the 5-14 days after pruning, even though some shoot regrowth occurred during this time. Mean topsoil (0-5 cm depth) root length density of G. sepium was 520% greater than that of P. dasyrrachis, whereas total root length (0-100 cm depth) of G. sepium was only 450% greater. On average, G. sepium recovered 15 times as much 15N as P. dasyrrachis, following application of 15N at 5 cm depth, but the two species recovered a similar amount following application at 80 cm depth, suggesting that P. dasyrrachis had better niche complementarity with shallow rooting crops. However, both species showed strong plasticity in vertical N uptake pattern in response to competition from establishing maize plants. The species differed in their response: N uptake activity by G. sepium shifted down the soil profile in response to increasing competition from a growing maize crop (uptake from 80 cm depth changed from 4 to 9% of uptake from 5 cm depth), whereas N uptake by P. dasyrrachis became relatively shallow (uptake from 80 cm depth changed from 305 to 25% of uptake from 5 cm depth). Niche avoidance and increased competitiveness within the topsoil represent alternative responses to competition. The response displayed may be related to soil fertility in the species' natural habitats.


Asunto(s)
Adaptación Fisiológica , Fabaceae/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Árboles/metabolismo , Ecosistema , Fabaceae/fisiología , Isótopos de Nitrógeno , Raíces de Plantas/crecimiento & desarrollo , Suelo/análisis , Factores de Tiempo , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA