Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(3): e0128121, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638728

RESUMEN

Identification of genes encoding ß-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 × precision × recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding ß-lactamases (BLs) confer resistance to the widely prescribed antibiotic class ß-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings.


Asunto(s)
Antibacterianos , beta-Lactamasas , Humanos , beta-Lactamasas/genética , Filogenia , Antibacterianos/farmacología , beta-Lactamas , Farmacorresistencia Microbiana
2.
Eur J Hum Genet ; 22(3): 402-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23881057

RESUMEN

Candidate gene and genome-wide association studies (GWAS) represent two complementary approaches to uncovering genetic contributions to common diseases. We systematically reviewed the contributions of these approaches to our knowledge of genetic associations with cancer risk by analyzing the data in the Cancer Genome-wide Association and Meta Analyses database (Cancer GAMAdb). The database catalogs studies published since January 1, 2000, by study and cancer type. In all, we found that meta-analyses and pooled analyses of candidate genes reported 349 statistically significant associations and GWAS reported 269, for a total of 577 unique associations. Only 41 (7.1%) associations were reported in both candidate gene meta-analyses and GWAS, usually with similar effect sizes. When considering only noteworthy associations (defined as those with false-positive report probabilities≤0.2) and accounting for indirect overlap, we found 202 associations, with 27 of those appearing in both meta-analyses and GWAS. Our findings suggest that meta-analyses of well-conducted candidate gene studies may continue to add to our understanding of the genetic associations in the post-GWAS era.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias/genética , Estudios de Casos y Controles , Humanos
3.
PLoS One ; 7(2): e25431, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22347358

RESUMEN

Pathogen genetics is already a mainstay of public health investigation and control efforts; now advances in technology make it possible to investigate the role of human genetic variation in the epidemiology of infectious diseases. To describe trends in this field, we analyzed articles that were published from 2001 through 2010 and indexed by the HuGE Navigator, a curated online database of PubMed abstracts in human genome epidemiology. We extracted the principal findings from all meta-analyses and genome-wide association studies (GWAS) with an infectious disease-related outcome. Finally, we compared the representation of diseases in HuGE Navigator with their contributions to morbidity worldwide. We identified 3,730 articles on infectious diseases, including 27 meta-analyses and 23 GWAS. The number published each year increased from 148 in 2001 to 543 in 2010 but remained a small fraction (about 7%) of all studies in human genome epidemiology. Most articles were by authors from developed countries, but the percentage by authors from resource-limited countries increased from 9% to 25% during the period studied. The most commonly studied diseases were HIV/AIDS, tuberculosis, hepatitis B infection, hepatitis C infection, sepsis, and malaria. As genomic research methods become more affordable and accessible, population-based research on infectious diseases will be able to examine the role of variation in human as well as pathogen genomes. This approach offers new opportunities for understanding infectious disease susceptibility, severity, treatment, control, and prevention.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/genética , Variación Genética , Métodos Epidemiológicos , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Metaanálisis como Asunto , PubMed
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...