Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060501

RESUMEN

X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.

2.
Curr Biol ; 34(14): R680-R682, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043139

RESUMEN

Cohesin holds together the sister chromatids from DNA replication onwards. How cohesion is established has long remained a black box. Through recent studies, a model is emerging in which a replisome-cohesin encounter results in the establishment of cohesive linkages at sites of replication termination.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Cohesinas , Replicación del ADN , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromátides/metabolismo
3.
Mol Cell ; 84(5): 814-815, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458170

RESUMEN

In this issue of Molecular Cell, two papers provide insight into atypical structural maintenance of chromosomes protein complexes (SMCs). Jeppsson et al.1 link Smc5/6 to supercoiled DNA, and Roisné-Hamelin et al.2 show how Wadjet SMC bends and cleaves invading DNAs.


Asunto(s)
Proteínas de Ciclo Celular , Cromosomas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , ADN , Reparación del ADN , Proteínas de Unión al ADN/genética
4.
Science ; 382(6671): 646-648, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943927

RESUMEN

A potential mechanism of DNA loop extrusion by molecular motors is discussed.

5.
Nat Rev Mol Cell Biol ; 24(9): 633-650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37231112

RESUMEN

Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.


Asunto(s)
Cromatina , Cromosomas , Cromosomas/genética , Cromosomas/metabolismo , Cromatina/genética , ADN/genética , Replicación del ADN/genética , Mitosis , Proteínas de Ciclo Celular/química
6.
Nat Struct Mol Biol ; 30(6): 853-859, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37081319

RESUMEN

In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Humanos , Células HeLa , Centrómero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros , Mitosis , Segregación Cromosómica , Cromátides/metabolismo
7.
Nat Struct Mol Biol ; 29(6): 586-591, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35710836

RESUMEN

Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Acetilación , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Histona Desacetilasas/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Cohesinas
8.
Mol Cell ; 82(9): 1616-1630, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477004

RESUMEN

SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Mitosis/genética
9.
Nat Commun ; 13(1): 754, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136067

RESUMEN

The genome consists of regions of transcriptionally active euchromatin and more silent heterochromatin. We reveal that the formation of heterochromatin domains requires cohesin turnover on DNA. Stabilization of cohesin on DNA through depletion of its release factor WAPL leads to a near-complete loss of heterochromatin domains. We observe the opposite phenotype in cells deficient for subunits of the Mediator-CDK module, with an almost binary partition of the genome into dense H3K9me3 domains, and regions devoid of H3K9me3 spanning the rest of the genome. We suggest that the Mediator-CDK module might contribute to gene expression by limiting the formation of dense heterochromatin domains. WAPL deficiency prevents the formation of heterochromatin domains, and allows for gene expression even in the absence of the Mediator-CDK subunit MED12. We propose that cohesin and Mediator affect heterochromatin in different ways to enable the correct distribution of epigenetic marks, and thus to ensure proper gene expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Portadoras/genética , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Epigénesis Genética , Técnicas de Inactivación de Genes , Humanos , Complejo Mediador/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , RNA-Seq , Cohesinas
10.
NAR Genom Bioinform ; 3(2): lqab040, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34046591

RESUMEN

Conformation capture-approaches like Hi-C can elucidate chromosome structure at a genome-wide scale. Hi-C datasets are large and require specialised software. Here, we present GENOVA: a user-friendly software package to analyse and visualise chromosome conformation capture (3C) data. GENOVA is an R-package that includes the most common Hi-C analyses, such as compartment and insulation score analysis. It can create annotated heatmaps to visualise the contact frequency at a specific locus and aggregate Hi-C signal over user-specified genomic regions such as ChIP-seq data. Finally, our package supports output from the major mapping-pipelines. We demonstrate the capabilities of GENOVA by analysing Hi-C data from HAP1 cell lines in which the cohesin-subunits SA1 and SA2 were knocked out. We find that ΔSA1 cells gain intra-TAD interactions and increase compartmentalisation. ΔSA2 cells have longer loops and a less compartmentalised genome. These results suggest that cohesinSA1 forms longer loops, while cohesinSA2 plays a role in forming and maintaining intra-TAD interactions. Our data supports the model that the genome is provided structure in 3D by the counter-balancing of loop formation on one hand, and compartmentalization on the other hand. By differentially controlling loops, cohesinSA1 and cohesinSA2 therefore also affect nuclear compartmentalization. We show that GENOVA is an easy to use R-package, that allows researchers to explore Hi-C data in great detail.

11.
Curr Opin Cell Biol ; 70: 84-90, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33545664

RESUMEN

Cohesin and CTCF are key to the 3D folding of interphase chromosomes. Cohesin forms chromatin loops via loop extrusion, a process that involves the formation and enlargement of DNA loops. The architectural protein CTCF controls this process by acting as an anchor for chromatin looping. How CTCF controls cohesin has long been a mystery. Recent work shows that CTCF dictates chromatin looping via a direct interaction of its N-terminus with cohesin. CTCF's ability to regulate chromatin looping turns out to also be partially dependent on several RNA-binding domains. In this review, we discuss recent insights and consider how cohesin and CTCF together may orchestrate the folding of the genome into chromosomal loops.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cohesinas
12.
Nature ; 578(7795): 472-476, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31905366

RESUMEN

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Asunto(s)
Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Cromatina/química , Cromatina/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Ligandos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cohesinas
13.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31629658

RESUMEN

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/química , Sitios de Unión/genética , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cromosomas/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Humanos , Complejos Multiproteicos/fisiología , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , Cohesinas
14.
Curr Opin Genet Dev ; 55: 11-18, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31108424

RESUMEN

From the dynamic interphase genome to compacted mitotic chromosomes, DNA is organized by the conserved SMC complexes cohesin and condensin. The picture is emerging that these complexes structure the genome through a shared basic principle that involves the formation and processive enlargement of chromatin loops. This appears to be an asymmetric process, in which the complex anchors at the base of a loop and then enlarges the loop in a one-sided manner. We discuss the latest insights into how ATPase-driven conformational changes within these complexes may enlarge loops, and consider how asymmetric DNA reeling can bring together genomic elements in a symmetric manner.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Humanos , Mamíferos , Complejos Multiproteicos/genética
15.
Nat Genet ; 50(8): 1151-1160, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988121

RESUMEN

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the ß-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect 'cohesin traffic jams'. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos/genética , Alelos , Animales , Factor de Unión a CCCTC/genética , Ratones , Conformación de Ácido Nucleico , Secuencias Reguladoras de Ácidos Nucleicos/genética , Globinas beta/genética
16.
Trends Genet ; 34(6): 477-487, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29606284

RESUMEN

What drives the formation of chromatin loops has been a long-standing question in chromosome biology. Recent work provides major insight into the basic principles behind loop formation. Structural maintenance of chromosomes (SMC) complexes, that are conserved from bacteria to humans, are key to this process. The SMC family includes condensin and cohesin, which structure chromosomes to enable mitosis and long-range gene regulation. We discuss novel insights into the mechanism of loop formation and the implications for how these complexes ultimately shape chromosomes. A picture is emerging in which these complexes form small loops that they then processively enlarge. It appears that SMC complexes act by family-wide basic principles, with complex-specific levels of control.


Asunto(s)
Proteínas Portadoras/genética , Cromatina/genética , Cromosomas/genética , Mitosis/genética , Proteínas Nucleares/genética , Adenosina Trifosfatasas/genética , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Humanos , Complejos Multiproteicos/genética , Cohesinas
18.
Cell Rep ; 20(12): 2749-2755, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930671

RESUMEN

To ensure disjunction to opposite poles during anaphase, sister chromatids must be held together following DNA replication. This is mediated by cohesin, which is thought to entrap sister DNAs inside a tripartite ring composed of its Smc and kleisin (Scc1) subunits. How such structures are created during S phase is poorly understood, in particular whether they are derived from complexes that had entrapped DNAs prior to replication. To address this, we used selective photobleaching to determine whether cohesin associated with chromatin in G1 persists in situ after replication. We developed a non-fluorescent HaloTag ligand to discriminate the fluorescence recovery signal from labeling of newly synthesized Halo-tagged Scc1 protein (pulse-chase or pcFRAP). In cells where cohesin turnover is inactivated by deletion of WAPL, Scc1 can remain associated with chromatin throughout S phase. These findings suggest that cohesion might be generated by cohesin that is already bound to un-replicated DNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Humanos/metabolismo , Replicación del ADN , Proteínas Portadoras/metabolismo , Línea Celular , Cromatina/metabolismo , Proteínas de Unión al ADN , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Interfase , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Cohesinas
19.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475897

RESUMEN

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Acetiltransferasas/metabolismo , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Elongasas de Ácidos Grasos , Edición Génica , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Cohesinas
20.
Mol Cell ; 61(4): 563-574, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26895425

RESUMEN

Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin's Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin's association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA