Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 670336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335499

RESUMEN

The colonization of the human gut microbiome begins at birth, and over time, these microbial communities become increasingly complex. Most of what we currently know about the human microbiome, especially in early stages of development, was described using culture-independent sequencing methods that allow us to identify the taxonomic composition of microbial communities using genomic techniques, such as amplicon or shotgun metagenomic sequencing. Each method has distinct tradeoffs, but there has not been a direct comparison of the utility of these methods in stool samples from very young children, which have different features than those of adults. We compared the effects of profiling the human infant gut microbiome with 16S rRNA amplicon vs. shotgun metagenomic sequencing techniques in 338 fecal samples; younger than 15, 15-30, and older than 30 months of age. We demonstrate that observed changes in alpha-diversity and beta-diversity with age occur to similar extents using both profiling methods. We also show that 16S rRNA profiling identified a larger number of genera and we find several genera that are missed or underrepresented by each profiling method. We present the link between alpha diversity and shotgun metagenomic sequencing depth for children of different ages. These findings provide a guide for selecting an appropriate method and sequencing depth for the three studied age groups.

2.
Nutrients ; 13(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34444993

RESUMEN

Bifidobacterium longum subsp. infantis (B. infantis) is one of a few microorganisms capable of metabolizing human breast milk and is a pioneer colonizer in the guts of breastfed infants. One current challenge is differentiating B. infantis from its close relatives, B. longum and B. suis. All three organisms are classified in the same species group but only B. infantis can metabolize human milk oligosaccharides (HMOs). We compared HMO-metabolizing genes across different Bifidobacterium genomes and developed B. infantis-specific primers to determine if the genes alone or the primers can be used to quickly characterize B. infantis. We showed that B. infantis is uniquely identified by the presence of five HMO-metabolizing gene clusters, tested for its prevalence in infant gut metagenomes, and validated the results using the B. infantis-specific primers. We observed that only 15 of 203 (7.4%) children under 2 years old from a cohort of US children harbored B. infantis. These results highlight the importance of developing and improving approaches to identify B. infantis. A more accurate characterization may provide insights into regional differences of B. infantis prevalence in infant gut microbiota.


Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal/genética , Leche Humana/química , Oligosacáridos/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Lactancia Materna , Estudios de Cohortes , Heces/microbiología , Genes Bacterianos/genética , Humanos , Lactante , Recién Nacido
3.
Nature ; 576(7786): 311-314, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802001

RESUMEN

Oxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed1,2 that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen3, reactive oxygen species4,5 or by high-potential photosynthetic reaction centres6,7. Here we show that communities of anoxygenic photosynthetic microorganisms biomineralize manganese oxides in the absence of molecular oxygen and high-potential photosynthetic reaction centres. Microbial oxidation of Mn(II) under strictly anaerobic conditions during the Archaean eon would have produced geochemical signals identical to those used to date the evolution of oxygenic photosynthesis before the Great Oxidation Event1,2. This light-dependent process may also produce manganese oxides in the photic zones of modern anoxic water bodies and sediments.


Asunto(s)
Lagos/microbiología , Manganeso/metabolismo , Anaerobiosis , Biopelículas , Luz , Oxidación-Reducción , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...