Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 125(1): 296-304, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326337

RESUMEN

The marmoset monkey (Callithrix jacchus) has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained. For example, whereas the location of the frontal eye fields (FEF) within the dorsolateral frontal cortex has been proposed, it remains unclear whether neurons in the corresponding areas show visual responses-an important characteristic of FEF neurons in other species. Here, we provide the first description of receptive field properties and neural response latencies in the marmoset dorsolateral frontal cortex, based on recordings using Utah arrays in anesthetized animals. We find brisk visual responses in specific regions of the dorsolateral prefrontal cortex, particularly in areas 8aV, 8C, and 6DR. As in macaque FEF, the receptive fields were typically large (10°-30° in diameter) and the median responses latency was brisk (60 ms). These results constrain the possible interpretations about the location of the marmoset FEF and suggest that the marmoset model's significant advantages for the use of physiological techniques may be leveraged in the study of visuomotor cognition.NEW & NOTEWORTHY Behavior and cognition in humans and other primates rely on networks of brain areas guided by the frontal cortex. The marmoset offers exciting new opportunities to study links between brain physiology and behavior, but the functions of frontal cortex areas are still being identified in this species. Here, we provide the first evidence of visual receptive fields in the marmoset dorsolateral frontal cortex, an important step toward future studies of visual cognitive behavior.


Asunto(s)
Potenciales Evocados Visuales , Lóbulo Frontal/fisiología , Animales , Callithrix , Femenino , Masculino , Campos Visuales , Percepción Visual
2.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115750

RESUMEN

Adjacent neurons in visual cortex have overlapping receptive fields within and across area boundaries, an arrangement theorized to minimize wiring cost. This constraint is traditionally thought to create retinotopic maps of opposing field signs (mirror and nonmirror visual field representations) in adjacent areas, a concept that has become central in current attempts to subdivide the extrastriate cortex. We simulated the formation of retinotopic maps using a model that balances constraints imposed by smoothness in the representation within an area and by congruence between areas. As in the primate cortex, this model usually leads to alternating mirror and nonmirror maps. However, we found that it can also produce a more complex type of map, consisting of sectors with opposing field sign within a single area. Using fully quantitative electrode array recordings, we then demonstrate that this type of inhomogeneous map exists in the controversial dorsomedial region of the primate extrastriate cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA