Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; : e5161, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38715469

RESUMEN

Achieving high-resolution and high signal-to-noise ratio (SNR) in vivo metabolic imaging via fast magnetic resonance spectroscopic imaging (MRSI) has been a longstanding challenge. This study combines the methods of relaxation enhancement (RE) and subspace imaging for the first time, enabling high-resolution and high-SNR in vivo MRSI of rodent brains at 9.4 T. Specifically, an RE-based chemical shift imaging sequence, which combines a frequency-selective pulse to excite only the metabolite frequencies with minimum perturbation of the water spins and a pair of adiabatic pulses to spatially localize the slice of interest, is designed and evaluated in vivo. This strategy effectively shortens the apparent T1 of metabolites, thereby increasing the SNR during relatively short repetition time ((TR) compared with acquisitions with only spatially selective wideband excitations, and does not require water suppression. The SNR was further enhanced via a state-of-the-art subspace reconstruction method. A novel subspace learning strategy tailored for 9.4 T and RE acquisitions is developed. In vivo, high-resolution (e.g., voxel size of 0.6 × 0.6 × 1.5 mm3) MRSI of both healthy mouse brains and a glioma-bearing mouse brain in 12.5 min has been demonstrated.

2.
Brain Sci ; 13(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38002466

RESUMEN

A glioma is a malignant brain tumor with a poor prognosis. Attempts at the surgical removal of the tumor are the first approach, but additional treatment strategies, including radiation therapy and systemic or local chemotherapy, are necessary. Furthermore, the treatments are often associated with significant adverse side effects. Normal and malignant cells generally have antigenic differences, and this is the rationale for clinical immunotherapeutic strategies. Cytokines such as IL-15 or IL-2, which stimulate an anti-tumor immune response, have been shown to have a particularly high potential for use in immunotherapy against various tumors. In this review, treatments with either a poxvirus, genetically engineered to secrete IL-15, or allogeneic fibroblasts, transfected with tumor DNA and engineered to secrete IL-2, are shown to be effective strategies in extending the survival of mice with malignant brain tumors upon intracerebral injection of the treatment cells. Future studies with these treatment strategies in patients with intracerebral tumors are urgently needed.

3.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37258040

RESUMEN

BACKGROUND: Treatment of some blood cancers with T cells that express a chimeric antigen receptor (CAR) against CD19 have shown remarkable results. In contrast, CAR-T cell efficacy against solid tumors has been difficult to achieve. METHODS: To examine the potential of CAR-T cell treatments against ovarian cancers, we used the mouse ovarian cancer cell line ID8 in an intraperitoneal model that exhibits disseminated solid tumors in female C57BL/6J mice. The CAR contained a single-chain Fv from antibody 237 which recognizes a Tn-glycopeptide-antigen expressed by ID8 due to aberrant O-linked glycosylation in the absence of the transferase-dependent chaperone Cosmc. The efficacy of four Tn-dependent CARs with varying affinity to Tn antigen, and each containing CD28/CD3ζ cytoplasmic domains, were compared in vitro and in vivo in this study. RESULTS: In line with many observations about the impact of aberrant O-linked glycosylation, the ID8Cosmc knock-out (ID8Cosmc-KO) exhibited more rapid tumor progression compared with wild-type ID8. Despite the enhanced tumor growth in vivo, 237 CAR and a mutant with 30-fold higher affinity, but not CARs with lower affinity, controlled advanced ID8Cosmc-KO tumors. Tumor regression could be achieved with a single intravenous dose of the CARs, but intraperitoneal administration was even more effective. The CAR-T cells persisted over a period of months, allowing CAR-treated mice to delay tumor growth in a re-challenge setting. The most effective CARs exhibited the highest affinity for antigen. Antitumor effects observed in vivo were associated with increased numbers of T cells and macrophages, and higher levels of cleaved caspase-3, in the tumor microenvironment. Notably, the least therapeutically effective CAR mediated tonic signaling leading to antigen-independent cytokine expression and it had higher levels of the immunosuppressive cytokine interleukin10. CONCLUSION: The findings support the development of affinity-optimized CAR-T cells as a potential treatment for established ovarian cancer, with the most effective CARs mediating a distinct pattern of inflammatory cytokine release in vitro. Importantly, the most potent Tn-dependent CAR-T cells showed no evidence of toxicity in tumor-bearing mice in a syngeneic, immunocompetent system.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Humanos , Femenino , Ratones , Animales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Inmunoterapia Adoptiva/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos C57BL , Citocinas/metabolismo , Microambiente Tumoral
4.
Sci Transl Med ; 13(603)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290053

RESUMEN

Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.


Asunto(s)
Neoplasias de la Mama , Recurrencia Local de Neoplasia , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Perros , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Ratones , Ratas , Respuesta de Proteína Desplegada
5.
Clin Cancer Res ; 26(9): 2216-2230, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32019860

RESUMEN

PURPOSE: We hypothesized that the combination of a local stimulus for activating tumor-specific T cells and an anti-immunosuppressant would improve treatment of gliomas. Virally encoded IL15Rα-IL15 as the T-cell activating stimulus and a prostaglandin synthesis inhibitor as the anti-immunosuppressant were combined with adoptive transfer of tumor-specific T cells. EXPERIMENTAL DESIGN: Two oncolytic poxviruses, vvDD vaccinia virus and myxoma virus, were each engineered to express the fusion protein IL15Rα-IL15 and a fluorescent protein. Viral gene expression (YFP or tdTomato Red) was confirmed in the murine glioma GL261 in vitro and in vivo. GL261 tumors in immunocompetent C57BL/6J mice were treated with vvDD-IL15Rα-YFP vaccinia virus or vMyx-IL15Rα-tdTr combined with other treatments, including vaccination with GARC-1 peptide (a neoantigen for GL261), rapamycin, celecoxib, and adoptive T-cell therapy. RESULTS: vvDD-IL15Rα-YFP and vMyx-IL15Rα-tdTr each infected and killed GL261 cells in vitro. In vivo, NK cells and CD8+ T cells were increased in the tumor due to the expression of IL15Rα-IL15. Each component of a combination treatment contributed to prolonging survival: an oncolytic virus, the IL15Rα-IL15 expressed by the virus, a source of T cells (whether by prevaccination or adoptive transfer), and prostaglandin inhibition all synergized to produce elimination of gliomas in a majority of mice. vvDD-IL15Rα-YFP occasionally caused ventriculitis-meningitis, but vMyx-IL15Rα-tdTr was safe and effective, causing a strong infiltration of tumor-specific T cells and eliminating gliomas in 83% of treated mice. CONCLUSIONS: IL15Rα-IL15-armed oncolytic poxviruses provide potent antitumor effects against brain tumors when combined with adoptive T-cell therapy, rapamycin, and celecoxib.


Asunto(s)
Neoplasias Encefálicas/terapia , Celecoxib/farmacología , Sinergismo Farmacológico , Glioma/terapia , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Sirolimus/farmacología , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Terapia Combinada , Inhibidores de la Ciclooxigenasa 2/farmacología , Modelos Animales de Enfermedad , Femenino , Glioma/inmunología , Glioma/metabolismo , Inmunosupresores/farmacología , Inmunoterapia Adoptiva , Interleucina-15/inmunología , Masculino , Ratones Endogámicos C57BL , Myxoma virus/genética , Myxoma virus/aislamiento & purificación , Receptores de Interleucina-15/inmunología , Virus Vaccinia/genética
6.
Oncolytic Virother ; 8: 3-8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30805315

RESUMEN

BACKGROUND: Oncolytic viruses selectively infect cancer cells while avoiding infection of normal cells. Usually, selectivity is demonstrated by injecting a virus into tumor-bearing mice and observing infection and lysis of tumor cells without infection of other tissues. The general view is that this selectivity is due to tropisms of the virus. However, apparent selectivity could be due to accessibility. For example, intravenously injected virus may not gain access to cells within the central nervous system (CNS) because of the blood-brain barrier. PURPOSE: We tested the CNS safety of two oncolytic poxviruses that have been demonstrated to be safe for treatment of peripheral tumors (vaccinia virus vvDD-IL15-Rα and myxoma virus vMyx-IL15Rα-tdTr). METHODS: Two poxviruses were tested for selectivity in vitro and in vivo. RESULTS: Both viruses infected glioma cells in vitro. In vivo, both viruses infected glioma cells and did not infect neurons when injected into a tumor or into the normal striatum. However, viral gene expression was observed in ependymal cells lining the ventricles, implying that these poxviruses were not as selective as originally predicted. For vvDD-IL15-Rα, some tumor-bearing mice died soon after virus treatment. If the same titer of vvDD-IL15-Rα was injected directly into the lateral cerebral ventricle of nontumor-bearing mice, it was uniformly fatal. Infection of ependymal cells, subventricular cells, and meninges was widespread. On the other hand, vMyx-IL15Rα-tdTr only transiently infected ependymal cells and was safe even when injected directly into the lateral cerebral ventricles. The two poxviruses also differed in their infection of dendritic cells; vvDD-IL15-Rα infected dendritic cells and lysed them but vMyx-IL15Rα-tdTr did not. CONCLUSION: Vaccinia virus vvDD-IL15-Rα is very promising for treating cancer types outside of the brain. However, for cancers located within the brain, myxoma virus vMyx-IL15Rα-tdTr offers a safer alternative.

7.
Mol Ther ; 26(10): 2476-2486, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30064894

RESUMEN

Oncolytic immunotherapy is a promising novel therapeutic for cancer, and further preclinical studies may maximize its therapeutic efficacy. In this study, we construct a novel oncolytic vaccinia virus (VV) expressing a superagoinst IL-15, a fusion protein of IL-15 and IL-15Ralpha. This virus, named vvDD-IL15-Rα, possesses similar replication efficiency as the parental virus vvDD yet leads to significantly more regression of the disease and extends the survival of mice bearing MC38 colon or ID8 ovarian cancer. This novel virus elicits potent adaptive antitumor immunity as shown by ELISPOT assays for interferon-gamma-secreting CD8+ T cells and by the rejection of tumor implants upon re-challenge in the mice, which were previously cured by vvDD-IL15-Rα treatment. In vivo cell depletion assays with antibodies showed that this antitumor activity is highly dependent on CD8+ T cells but much less so on CD4+ T cells and NK cells. Finally, the combination of the oncolytic immunotherapy with anti-PD-1 antibody dramatically improves the therapeutic outcome compared to either anti-PD-1 alone or vvDD-IL15-Rα alone. These results demonstrate that the IL-15-IL-15Rα fusion protein-expressing OV elicits potent antitumor immunity, and rational combination with PD-1 blockade leads to dramatic tumor regression and prolongs the survival of mice bearing colon or ovarian cancers.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-15/genética , Interleucina-15/genética , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/genética , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Terapia Combinada , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunoterapia/métodos , Interferón gamma/genética , Interleucina-15/administración & dosificación , Subunidad alfa del Receptor de Interleucina-15/administración & dosificación , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Viroterapia Oncolítica/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Gen Virol ; 99(2): 246-252, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29393023

RESUMEN

Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.


Asunto(s)
Virus del Molusco Contagioso/inmunología , FN-kappa B/antagonistas & inhibidores , Virus Vaccinia/patogenicidad , Proteínas Virales/administración & dosificación , Administración Intranasal , Animales , Niño , Femenino , Humanos , Inyecciones Intradérmicas , Ratones Endogámicos BALB C , Virus del Molusco Contagioso/genética , Proteínas Virales/inmunología , Virulencia
9.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490586

RESUMEN

All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.


Asunto(s)
Eliminación de Gen , Inmunidad Innata , Virus Vaccinia/patogenicidad , Vaccinia/patología , Proteínas Virales/genética , Factores de Virulencia/genética , Animales , Modelos Animales de Enfermedad , Ratones , Vaccinia/virología , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo
10.
Behav Brain Res ; 315: 10-22, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27478140

RESUMEN

The negative impact of chemotherapy on cognitive function in cancer patients has gained increasing attention in the last decade. Whilst the short-term acute effects on cognition are expected following chemotherapy, the persistence of such impairments in the long-term is still in question. This is despite clinical evidence indicating cognitive difficulties may persist well beyond treatment and affect quality of life. In the present study, we assessed the long-term (3 months) cognitive impact of chemotherapy in a mouse model intended to mimic the human female post-menopausal population receiving chemotherapy for breast cancer. Ovariectomized, female, C57BL/6J mice received two doses of Doxorubicin, Cyclophosphamide, and 5-Fluorouracil or saline vehicle (control), separated by one week. During this interval, mice received BrdU injections to label dividing cells. Results indicate a persistent impairment in learning and recall (1h, 24h and 48h) on the Morris water maze, reduced survival and differentiation of new neurons (BrdU+/NeuN+), and a persistent decline in proliferation of new cells (Ki67(+)) in the dentate gyrus. Locomotor activity, motor performance, and anxiety-like behavior were unaffected. We further evaluated the efficacy of a diet enriched in omega-3-fatty acids (DHA+EPA+DPA), in reversing long-term chemotherapy deficits but no rescue was observed. The model described produces long-term cognitive and cellular impairments from chemotherapy that mimic those observed in humans. It could be useful for identifying mechanisms of action and to test further the ability of lifestyle interventions (e.g., diet) for ameliorating chemotherapy-induced cognitive impairments.


Asunto(s)
Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Trastornos de la Memoria/inducido químicamente , Neurogénesis/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/efectos adversos , Doxorrubicina/efectos adversos , Conducta Exploratoria/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Fluorouracilo/efectos adversos , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Fosfopiruvato Hidratasa/metabolismo
11.
PLoS One ; 9(10): e109801, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25329832

RESUMEN

Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15) is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα) greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr), which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13) cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY) cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr). Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-15/genética , Interleucina-15/genética , Myxoma virus/genética , Myxoma virus/fisiología , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Proteínas Recombinantes de Fusión/genética , Animales , Recuento de Células , Línea Celular , Línea Celular Tumoral , Proliferación Celular , ADN Recombinante/genética , Ingeniería Genética , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Melanoma/patología , Melanoma/virología , Ratones , Linfocitos T/citología , Linfocitos T/inmunología
12.
Cancer Immunol Immunother ; 63(11): 1163-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25082071

RESUMEN

Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: (1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or (2) introduction of a chimeric antigen receptor, including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vα-linker-Vß) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen-loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Traslado Adoptivo , Animales , Antígenos CD28/metabolismo , Complejo CD3/metabolismo , Citocinas/metabolismo , Humanos , Complejo Mayor de Histocompatibilidad , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Trasplante de Neoplasias , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transducción de Señal/inmunología , Transducción Genética
13.
ACS Nano ; 7(11): 9599-610, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24083377

RESUMEN

Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Liposomas/química , Imagen por Resonancia Magnética/instrumentación , Adsorción , Animales , Quelantes/química , Quitosano/química , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Ácido Pentético/química , Polímeros/química , Ratas , Ratas Sprague-Dawley , Termodinámica
14.
Cancer Immunol Immunother ; 62(2): 359-69, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22926060

RESUMEN

Clinical studies with immunotherapies for cancer, including adoptive cell transfers of T cells, have shown promising results. It is now widely believed that recruitment of CD4(+) helper T cells to the tumor would be favorable, as CD4(+) cells play a pivotal role in cytokine secretion as well as promoting the survival, proliferation, and effector functions of tumor-specific CD8(+) cytotoxic T lymphocytes. Genetically engineered high-affinity T-cell receptors (TCRs) can be introduced into CD4(+) helper T cells to redirect them to recognize MHC-class I-restricted antigens, but it is not clear what affinity of the TCR will be optimal in this approach. Here, we show that CD4(+) T cells expressing a high-affinity TCR (nanomolar K (d) value) against a class I tumor antigen mediated more effective tumor treatment than the wild-type affinity TCR (micromolar K (d) value). High-affinity TCRs in CD4(+) cells resulted in enhanced survival and long-term persistence of effector memory T cells in a melanoma tumor model. The results suggest that TCRs with nanomolar affinity could be advantageous for tumor targeting when expressed in CD4(+) T cells.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Genes MHC Clase I/inmunología , Melanoma Experimental/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias Cutáneas/inmunología , Traslado Adoptivo , Animales , Antineoplásicos/uso terapéutico , Linfocitos T CD4-Positivos/química , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Supervivencia Celular/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Interferón gamma/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/biosíntesis , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética
15.
Oncolytic Virother ; 2: 1-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25866742

RESUMEN

Two recombinant myxoma viruses (MYXV expressing a fluorescent protein [MYXV-Tred] and MYXV-Tred encoding murine interleukin-15 [MYXV-IL15]) were evaluated for therapeutic effects in an aggressive B16F10 melanoma model in immunocompetent mice. It was hypothesized that continuous expression of IL-15 within a tumor would recruit cytotoxic effector cells to induce an antitumor immune response and improve treatment efficacy. Weekly intratumoral injections were given to evaluate the effect of treatment on the median survival time of C57BL/6 mice bearing established B16F10 melanomas. Mice that received MYXV-Tred or MYXV-IL15 lived significantly longer than mice given treatment controls. Unexpectedly, the median survival time of MYXV-IL15-treated mice was similar to that of MYXV-treated mice. At 1, 2, and 4 days postinoculation, viral plaque assays detected replicating MYXV-Tred and MYXV-IL15 within treated tumors. At these time points in MYXV-IL15-treated tumors, IL-15 concentration, lymphocyte grades, and cluster of differentiation-3+ cell counts were significantly increased when compared to other treatment groups. However, viral titers, recombinant protein expression, and lymphocyte numbers within the tumors diminished rapidly at 7 days postinoculation. These data indicate that treatment with recombinant MYXV should be repeated at least every 4 days to maintain recombinant protein expression within a murine tumor. Additionally, neutrophilic inflammation was significantly increased in MYXV-Tred- and MYXV-IL15-treated tumors at early time points. It is speculated that neutrophilic inflammation induced by intratumoral replication of recombinant MXYV contributes to the antitumoral effect of MYXV treatment in this melanoma model. These findings support the inclusion of neutrophil chemotaxins in recombinant poxvirus oncolytic virotherapy.

16.
Cancer Immunol Immunother ; 60(10): 1461-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21656158

RESUMEN

Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNß production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNß. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/terapia , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/terapia , Viroterapia Oncolítica/métodos , Sirolimus/uso terapéutico , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos/trasplante , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Myxoma virus
17.
Biomaterials ; 32(7): 2004-12, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21144582

RESUMEN

Injectable and biodegradable hydrogels have been increasingly studied for sustained drug delivery in various molecular therapies. However, it remains a challenge to attain desired delivery rate at injection sites due to local tissue pressures exerted on the soft hydrogels. Furthermore, there is often limited controllability of stiffness and degradation rates, which are key factors required for achieving desired drug release rate and therapeutic efficacy. This study presents a stiff and metastable poly(ethylene glycol) diacrylate (PEGDA)-poly(ethylene imine) (PEI) hydrogel which exhibits an elastic modulus equivalent to bulk plastic materials, and controllable degradation rate independent of its initial elastic modulus. Such unique stiffness was attained from the highly branched architecture of PEI, and the decoupled controllability of degradation rate was achieved by tuning the non-equilibrium swelling of the hydrogel. Furthermore, a single intramuscular administration of granulocyte colony stimulating factor (GCSF)-encapsulated PEGDA-PEI hydrogel extended the mobilization of mononuclear cells to four days. A larger yield of expanded CD34+ and CD31+ endothelial progenitor cells (EPCs) was also obtained as compared to the daily bolus administration. Overall, the hydrogel created in this study will be useful for the controlled and sustained delivery of a wide array of drug molecules.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polietilenglicoles/química , Animales , Embrión de Pollo , Pollos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocito/administración & dosificación , Receptores de Factor Estimulante de Colonias de Granulocito/química , Células Madre
18.
J Gen Virol ; 92(Pt 1): 195-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20861319

RESUMEN

Oncolytic viruses that selectively infect and lyse cancer cells have potential as therapeutic agents. Myxoma virus, a poxvirus that is known to be pathogenic only in rabbits, has not been reported to infect normal tissues in humans or mice. We observed that when recombinant virus was injected directly into the lateral ventricle of the mouse brain, virally encoded red fluorescent protein was expressed in ependymal and subventricular cells. Cells were positive for nestin, a marker of neural stem cells. Rapamycin increased the number of cells expressing the virally encoded protein. However, protein expression was transient. Cells expressing the virally encoded protein did not undergo apoptosis and the ependymal lining remained intact. Myxoma virus appears to be safe when injected into the brain despite the transient expression of virally derived protein in a small population of periventricular cells.


Asunto(s)
Encéfalo/virología , Epéndimo/virología , Myxoma virus/patogenicidad , Proteínas Virales/biosíntesis , Animales , Encéfalo/patología , Epéndimo/patología , Expresión Génica , Genes Reporteros , Histocitoquímica , Inyecciones Intraventriculares , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía , Coloración y Etiquetado/métodos , Proteína Fluorescente Roja
19.
J Immunol ; 183(3): 1828-37, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19592642

RESUMEN

Elimination of peripheral tumors by adoptively transferred tumor-specific T cells may require killing of cancer cells and tumor stromal cells. Tumor Ags are cross-presented on stromal cells, resulting in direct cytotoxic T cell (CTL) killing of both Ag-expressing cancer cells and stromal cells. Indirect killing of Ag loss variant cells also occurs. We show here that similar processes occur in a brain tumor stromal environment. We used murine cancer cell lines that express high or low levels of a peptide Ag, SIYRYYGL (SIY), recognized by transgenic 2C CD8(+) T cells. The two cell lines are killed with equivalent efficiency by 2C T cells in vitro. Following adoptive transfer of 2C T cells into mice with established SIY-Hi or SIY-Lo brain tumors, tumors of both types regressed, but low-Ag-expressing tumors recurred. High-Ag-expressing tumors contained CD11b(+) cells cross-presenting SIY peptide and were completely eliminated by 2C T cells. To further test the role of cross-presentation, RAG1(-/-) H-2(b) mice were infused with H-2(k) tumor cells expressing high levels of SIY peptide. Adoptively transferred 2C T cells are able to kill cross-presenting H-2(b) stromal cells but not H-2(k) tumor cells. In peripheral models, this paradigm led to a small static tumor. In the brain, activated 2C T cells were able to kill cross-presenting CD11b(+) cells and completely eliminate the H-2(k) tumors in most mice. Targeting brain tumor stroma or increasing Ag shedding from tumor cells to enhance cross-presentation may improve the clinical success of T cell adoptive therapies.


Asunto(s)
Traslado Adoptivo/métodos , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/prevención & control , Reactividad Cruzada/inmunología , Células del Estroma/inmunología , Linfocitos T Citotóxicos/trasplante , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Citotoxicidad Inmunológica , Ratones , Ratones Noqueados , Prevención Secundaria , Células del Estroma/patología , Linfocitos T Citotóxicos/inmunología
20.
J Immunol Methods ; 348(1-2): 18-29, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19559026

RESUMEN

Given the increasing interest in understanding in vivo migration of different cell types, it would be useful to have a simple method for tracking multiple cell populations in animals. Here we evaluated near infrared (NIR) dyes that intercalate into cell membranes as cell tracking labels, using both high-throughput and high-resolution methods. We tracked cells in tissues containing significant autofluorescence. CellVue Burgundy (ex 683/em 707) and CellVue NIR815 (ex 786/em 814) are especially useful because their spectral properties match the laser and detectors of the LI-COR laser scanner. After labeling cells ex vivo and injecting them into tumor-bearing mice, the distribution of cells in tumor and organs could be quantified in tissue sections with high throughput by scanning many slides at once. For example, we compared brain tumor infiltration and organ distribution of naïve and activated lymphocytes in single animals. High-resolution microscopic examination of the same tissues could be done by a relatively inexpensive modification of an epifluorescence microscope using a custom designed diode laser light source. Light emitting diodes that emit 685 nm and 780 nm light allowed microscopic visualization of the NIR labeled cells in tissues. The NIR dye-labeled cells were visualized with a greater signal/noise ratio compared to visible wavelength dyes such as CFSE, because of the low levels of autofluorescence in the NIR range. We also describe a simple modification of immunohistochemical procedures that allows combined visualization of the hydrophobic NIR dyes and antibody probes of cell markers in unfixed tissue. In combination these techniques will facilitate cell tracking in vivo.


Asunto(s)
Membrana Celular/química , Movimiento Celular , Colorantes Fluorescentes/química , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rayos Infrarrojos , Ganglios Linfáticos/citología , Ganglios Linfáticos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Bazo/citología , Bazo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...