Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 8(5): bvae045, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38562129

RESUMEN

Some transgender youth are treated with gonadotropin-releasing hormone agonists (GnRHa) followed by testosterone or estradiol, which may impact bone mineral density (BMD). This cross-sectional study of transgender youth (n = 56, aged 10.4-19.8 years, 53% assigned female at birth [AFAB]) utilized total body dual-energy x-ray absorptiometry to evaluate BMD Z-scores, and associations between GnRHa duration, body mass index (BMI), and BMD. Participants on GnRHa alone (n = 19, 14 assigned male at birth [AMAB], 5 AFAB) at the time of the study visit were 13.8 [12.8, 15.3] (median [IQR]) years old, had been on GnRHa for 10 [5.5, 19.5] months, and began GnRHa at age 12 [10.4, 12.6] years. Total body BMD Z-score for individuals on GnRHa monotherapy was -0.10 [-0.8, 0.4] (AFAB, female norms) and -0.65 [-1.4, 0.22] (AMAB, male norms). AFAB participants (n = 21) on testosterone were age 16.7 [15.9, 17.8] years, had been on testosterone for 11 [7.3, 14.5] months, and started testosterone at age 16 [14.8, 16.8] years; total body BMD Z-score -0.2 [-0.5, 0] (male norms) and 0.4 [-0.2, 0.7] (female norms). AMAB participants (n = 16) were age 16.2 [15.1, 17.4] years, had been on estradiol for 11 [5.6, 13.7] months, and started estradiol at age 16 [14.4, 16.7] years; total body BMD Z-score -0.4 [-1.1, 0.3] (male norms) and -0.2 [-0.7, 0.6] (female norms). BMD Z-score was negatively correlated with GnRHa duration (male norms: r = -0.5, P = .005; female norms: r = -0.4, P = .029) and positively correlated with BMI (male norms: r = 0.4, P = .003; female norms: r = 0.4, P = .004). In this cross-sectional cohort, total body BMD Z-scores were slightly below average, but lowest in the AMAB group on GnRHa monotherapy.

2.
Chembiochem ; 25(2): e202300572, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37861981

RESUMEN

Biomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non-specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein-nanoparticle hybrids formed through the spontaneous coupling of core-shell quantum dots (QDs) with histidine-tagged enzymes in non-photosynthetic bacteria, for light-mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7-fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9-fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low-cost biomanufacturing.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Redes y Vías Metabólicas , Proteínas de Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Carbono/metabolismo
3.
Front Physiol ; 12: 735543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744776

RESUMEN

Background: Pyruvate kinase deficiency (PKD) is the most frequent congenital enzymatic defect of glycolysis, and one of the most common causes of hereditary non spherocytic hemolytic anemia. Therapeutic interventions are limited, in part because of the incomplete understanding of the molecular mechanisms that compensate for the metabolic defect. Methods: Mass spectrometry-based metabolomics analyses were performed on red blood cells (RBCs) from healthy controls (n=10) and PKD patients (n=5). Results: In PKD patients, decreases in late glycolysis were accompanied by accumulation of pentose phosphate pathway (PPP) metabolites, as a function of oxidant stress to purines (increased breakdown and deamination). Markers of oxidant stress included increased levels of sulfur-containing compounds (methionine and taurine), polyamines (spermidine and spermine). Markers of hypoxia such as succinate, sphingosine 1-phosphate (S1P), and hypoxanthine were all elevated in PKD subjects. Membrane lipid oxidation and remodeling was observed in RBCs from PKD patients, as determined by increases in the levels of free (poly-/highly-unsaturated) fatty acids and acyl-carnitines. Conclusion: In conclusion, in the present study, we provide the first overview of RBC metabolism in patients with PKD. Though limited in scope, the study addresses the need for basic science to investigate pathologies targeting underrepresented minorities (Amish population in this study), with the ultimate goal to target treatments to health disparities.

4.
JCI Insight ; 6(21)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34499621

RESUMEN

Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by complement-dependent, fibroblast-induced perivascular accumulation and proinflammatory activation of macrophages. We hypothesized that, in PH, nanoscale-sized small extracellular vesicles (sEVs), released by perivascular/adventitial fibroblasts, are critical mediators of complement-dependent proinflammatory activation of macrophages. Pulmonary adventitial fibroblasts were isolated from calves with severe PH (PH-Fibs) and age-matched controls (CO-Fibs). PH-Fibs exhibited increased secretion of sEVs, compared with CO-Fibs, and sEV biological activity was tested on mouse and bovine bone marrow-derived macrophages (BMDMs) and showed similar responses. Compared with sEVs derived from CO-Fibs, sEVs derived from PH-Fibs (PH-Fib-sEVs) induced augmented expression of proinflammatory cytokines/chemokines and metabolic genes in BMDMs. Pharmacological blockade of exosome release from PH-Fibs resulted in significant attenuation of proinflammatory activation of BMDMs. "Bottom-up" proteomic analyses revealed significant enrichment of complement and coagulation cascades in PH-Fib-sEVs, including augmented expression of the complement component C3. We therefore examined whether the PH-Fib-sEV-mediated proinflammatory activation of BMDMs was complement C3 dependent. Treatment of PH-Fibs with siC3-RNA significantly attenuated the capacity of PH-Fib-sEVs for proinflammatory activation of BMDMs. PH-Fib-sEVs mediated proglycolytic alterations and complement-dependent activation of macrophages toward a proinflammatory phenotype, as confirmed by metabolomic studies. Thus, fibroblast-released sEVs served as critical mediators of complement-induced perivascular/microenvironmental inflammation in PH.


Asunto(s)
Reprogramación Celular/genética , Vesículas Extracelulares/genética , Fibroblastos/metabolismo , Hipertensión Pulmonar/fisiopatología , Macrófagos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...