Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 9(5): 2156-2169, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687654

RESUMEN

Poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in wearable biosensors. A green and biofriendly method for improving the mechanical properties, biocompatibility, and stability of PEDOT:PSS involves mixing the polymer with a biopolymer. Via structural changes and interactions with PEDOT:PSS, biopolymers have the potential to improve the self-healing ability, flexibility, and electrical conductivity of the composite. In this work, we fabricated novel protein-polymer multifunctional composites by mixing PEDOT:PSS with genetically programmable amyloid curli fibers produced byEscherichia coli bacteria. Curli fibers are among the stiffest protein polymers and, once isolated from bacterial biofilms, can form plastic-like thin films that heal with the addition of water. Curli-PEDOT:PSS composites containing 60% curli fibers exhibited a conductivity 4.5-fold higher than that of pristine PEDOT:PSS. The curli fibers imbued the biocomposites with an immediate water-induced self-healing ability. Further, the addition of curli fibers lowered the Young's and shear moduli of the composites, improving their compatibility for tissue-interfacing applications. Lastly, we showed that genetically engineered fluorescent curli fibers retained their ability to fluoresce within curli-PEDOT:PSS composites. Curli fibers thus allow to modulate a range of properties in conductive PEDOT:PSS composites, broadening the applications of this polymer in biointerfaces and bioelectronics.


Asunto(s)
Materiales Biocompatibles , Polímeros , Polímeros/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Bacterias , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA