Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Comput Methods Eng ; 29(7): 5525-5567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35729963

RESUMEN

Disease prediction from diagnostic reports and pathological images using artificial intelligence (AI) and machine learning (ML) is one of the fastest emerging applications in recent days. Researchers are striving to achieve near-perfect results using advanced hardware technologies in amalgamation with AI and ML based approaches. As a result, a large number of AI and ML based methods are found in the literature. A systematic survey describing the state-of-the-art disease prediction methods, specifically chronic disease prediction algorithms, will provide a clear idea about the recent models developed in this field. This will also help the researchers to identify the research gaps present there. To this end, this paper looks over the approaches in the literature designed for predicting chronic diseases like Breast Cancer, Lung Cancer, Leukemia, Heart Disease, Diabetes, Chronic Kidney Disease and Liver Disease. The advantages and disadvantages of various techniques are thoroughly explained. This paper also presents a detailed performance comparison of different methods. Finally, it concludes the survey by highlighting some future research directions in this field that can be addressed through the forthcoming research attempts.

2.
Sensors (Basel) ; 21(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071029

RESUMEN

Breast cancer, like most forms of cancer, is a fatal disease that claims more than half a million lives every year. In 2020, breast cancer overtook lung cancer as the most commonly diagnosed form of cancer. Though extremely deadly, the survival rate and longevity increase substantially with early detection and diagnosis. The treatment protocol also varies with the stage of breast cancer. Diagnosis is typically done using histopathological slides from which it is possible to determine whether the tissue is in the Ductal Carcinoma In Situ (DCIS) stage, in which the cancerous cells have not spread into the encompassing breast tissue, or in the Invasive Ductal Carcinoma (IDC) stage, wherein the cells have penetrated into the neighboring tissues. IDC detection is extremely time-consuming and challenging for physicians. Hence, this can be modeled as an image classification task where pattern recognition and machine learning can be used to aid doctors and medical practitioners in making such crucial decisions. In the present paper, we use an IDC Breast Cancer dataset that contains 277,524 images (with 78,786 IDC positive images and 198,738 IDC negative images) to classify the images into IDC(+) and IDC(-). To that end, we use feature extractors, including textural features, such as SIFT, SURF and ORB, and statistical features, such as Haralick texture features. These features are then combined to yield a dataset of 782 features. These features are ensembled by stacking using various Machine Learning classifiers, such as Random Forest, Extra Trees, XGBoost, AdaBoost, CatBoost and Multi Layer Perceptron followed by feature selection using Pearson Correlation Coefficient to yield a dataset with four features that are then used for classification. From our experimental results, we found that CatBoost yielded the highest accuracy (92.55%), which is at par with other state-of-the-art results-most of which employ Deep Learning architectures. The source code is available in the GitHub repository.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Neoplasias de la Mama/diagnóstico , Computadores , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...