Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(8): 2161-2164, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621101

RESUMEN

Hybrid fs/ps coherent anti-Stokes Raman scattering (CARS) thermometry often utilizes ps probe pulses derived from pulse shaping or spectrally filtering the primary laser source or by synchronization with a low repetition rate external laser. This results in limited energy, spectral resolution, and/or repetition rate of the ps probe. In this work, a master-oscillator power-amplifier (MOPA) laser was synchronized to the oscillator of a Ti:sapphire regenerative amplifier to achieve high-energy (600 µJ), narrowband (58 ps) probe pulses at kHz repetition rates. Temporal filtering allows the pulse characteristics to be adjusted for each application. At 25 Torr, relevant to high-speed flows, the kHz-rate MOPA system generated signal-to-noise ratios 3× higher in nitrogen and had improved precision relative to a 10 ps probe derived from spectral filtering and the power-amplifier. The MOPA system also enabled single-shot ro-vibrational hybrid fs/ps CARS thermometry in 650 K heated air.

2.
Appl Opt ; 63(5): 1247-1257, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38437304

RESUMEN

An injection-seeded, burst-mode optical parametric oscillator (OPO) operating at a repetition rate of 100 kHz is used to demonstrate the multiline molecular tagging velocimetry of an underexpanded jet using nitric oxide fluorescence. The very narrow linewidth of the OPO system, along with the relatively high pulse energies of the burst-mode system, enables efficient single-photon excitation of nitric oxide along multiple laser beam lines at a high repetition rate. Simultaneous one-dimensional velocity profile measurements were obtained of an underexpanded jet system at six different locations using a reference initial image and single-shot delayed images. A methodology for calculating the uncertainty of single-shot velocity is also described. Mean and root-mean-square velocity profiles are obtained at multiple locations simultaneously over a sampling time of 1 ms. The high-repetition-rate velocity measurements also appear to capture the onset of velocity oscillations and has the potential to reveal velocity frequency content occurring in the tens of kHz. The demonstrated velocimetry technique could be paired with other emerging burst-mode laser capabilities for a quantitative multiparameter gas property or multicomponent gas velocity measurements for supersonic and hypersonic flows, especially within ground test facilities that are limited to very short run durations.

3.
Opt Lett ; 49(5): 1297-1300, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426997

RESUMEN

The successful demonstration of long-lived nitric oxide (NO) fluorescence for molecular tagging velocimetry (MTV) measurements is described in this Letter. Using 1 + 1 resonance-enhanced multiphoton ionization (REMPI) of NO at a wavelength near 226 nm, targeting the overlapping Q1(7) and Q21(7) lines of the A-X (0, 0) electronic system, the lifetime of the NO MTV signal was observed to be approximately 8.6 µs within a 100-Torr cell containing 2% NO in nitrogen. This is in stark contrast to the commonly reported single photon NO fluorescence, which has a much shorter calculated lifetime of approximately 43 ns at this pressure and NO volume fraction. While the shorter lifetime fluorescence can be useful for molecular tagging velocimetry with single laser excitation within very high-speed flows at some thermodynamic conditions, the longer lived fluorescence shows the potential for an order of magnitude more accurate and precise velocimetry, particularly within lower speed regions of hypersonic flow fields such as wakes and boundary layers. The physical mechanism responsible for the generation of this long-lived signal is detailed. Furthermore, the effectiveness of this technique is showcased in a high-speed jet flow, where it is employed for precise flow velocity measurements.

4.
Opt Lett ; 48(15): 4005-4008, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527104

RESUMEN

In the filtered Rayleigh scattering (FRS) technique, Doppler or homogeneously broadened light from weak molecular scattering is separated from orders-of-magnitude stronger elastic scattering from surfaces, windows, particles, and/or droplets using a narrowband filter. In this work, high-speed detection of such weak molecular scattering is enabled by a burst-mode laser system that can achieve a spectral purity of ∼0.999999. This allows for an additional two orders of magnitude of attenuation from a narrowband iodine molecular filter for high-speed detection of gas-phase FRS in the presence of direct surface scattering at 532 nm. The methodology, system characterization, and feasibility of single-shot gas-phase FRS at 100 kHz or higher are presented and discussed.

5.
Appl Opt ; 62(6): A25-A30, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821296

RESUMEN

Krypton Tagging Velocimetry (KTV) and Picosecond Laser Electronic Excitation Tagging (PLEET) velocimetry at a 100-kHz rate were demonstrated in Mach 18 flow conditions at the Arnold Engineering Development Center (AEDC) Tunnel 9 employing a burst-mode laser system and a custom optical parametric oscillator (OPO). The measured freestream flow velocities from both KTV and PLEET agreed well with the theoretical calculation. The increase in repetition rate provides better capability to perform time-resolved velocimetry measurements in hypersonic flow environments.

6.
Appl Opt ; 62(6): A59-A75, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821300

RESUMEN

The recent progress in high-speed (≥100k H z) laser diagnostics for hypersonic flows is reviewed. Owing to the ultrahigh flow speed, a laser frequency of 100 kHz or higher is required for hypersonic diagnostics. Here, two main laser diagnostic techniques are discussed: focused laser differential interferometry (FLDI) and pulse-burst laser-based diagnostics. Single- and multiple-point FLDI measurements have been widely applied to hypersonic flows for flow velocity and density fluctuation measurements. The progress of pulse-burst laser-based hypersonic diagnostics, including flow velocity measurements and 2D flow visualization, is also discussed.

7.
Opt Lett ; 47(20): 5280-5283, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240342

RESUMEN

A novel, to the best of our knowledge, method for multipoint hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering measurements is presented. The pump/Stokes and probe beams are each split into 16 discrete points with 90 and 24 µJ/pulse, respectively, using simple diffractive optical elements, which are used in combination with a focusing lens and narrowband spectral amplifier for 1 kHz excitation along a linear array of probe volumes. Single-shot and averaged temperature and O2/N2 profile measurements are demonstrated along a line with 1 mm spacing in room temperature and heated N2 flows. This enables measurements over varying spatial extents for 1D profiles and potentially 2D grids in a simple and compact optical arrangement.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Temperatura
8.
Appl Opt ; 61(10): 2444-2458, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471310

RESUMEN

The understanding and predictive modeling of explosive blasts require advanced experimental diagnostics that can provide information on local state variables with high spatiotemporal resolution. Current datasets are predominantly based on idealized spherically symmetric explosive charges and point-probe measurements, although practical charges typically involve multidimensional spatial structures and complex shock-flow interactions. This work introduces megahertz-rate background-oriented schlieren tomography to resolve transient, three-dimensional density fields, as found in an explosive blast, without symmetry assumptions. A numerical evaluation is used to quantify the sources of error and optimize the reconstruction parameters for shock fields. Average errors are ∼3% in the synthetic environment, where the accuracy is limited by the deflection sensing algorithm. The approach was experimentally demonstrated on two different commercial blast charges (Mach ∼1.2 and ∼1.7) with both spherical and multi-shock structures. Overpressure measurements were conducted using shock-front tracking to provide a baseline for assessing the reconstructed densities. The experimental reconstructions of the primary blast fronts were within 9% of the expected peak values. The megahertz time resolution and quantitative reconstruction without symmetry assumptions were accomplished using a single high-speed camera and light source, enabling the visualization of multi-shock structures with a relatively simple arrangement. Future developments in illumination, imaging, and analysis to improve the accuracy in extreme environments are discussed.

9.
Appl Opt ; 61(9): 2192-2197, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35333233

RESUMEN

A 100 kHz krypton (Kr) tagging velocimetry (KTV) technique was demonstrated in a Mach-6 Ludwieg tube using a burst-mode laser-pumped optical parametric oscillator system. The single-beam KTV scheme at 212 nm produced an insufficient signal in this large hypersonic wind tunnel because of its low Kr seeding (≤5%), low static pressure (∼2.5torr), and long working distance (∼1m). To overcome these issues, a new scheme using two excitation beams was developed to enhance KTV performance. A 355 nm laser beam was combined with the 212 nm beam to promote efficient two-photon Kr excitation at 212 nm, and increase the probability of 2 + 1 resonant-enhanced multiphoton ionization by adding a 355 nm beam. A signal enhancement of approximately six times was obtained. Using this two-excitation beam approach, strong long-lasting KTV was successfully demonstrated at a 100 kHz repetition rate in a Mach-6 flow.

10.
Opt Lett ; 46(21): 5489-5492, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724508

RESUMEN

A burst-mode nitrogen (N2) picosecond vibrational coherent anti-Stokes Raman scattering (ps-VCARS) system is presented for accurate flame thermometry at 100 kHz repetition rate. A frequency-tripled ps burst-mode laser is used to pump a custom optical parametric generator/amplifier to produce 607 nm broadband Stokes pulses with 120cm-1 bandwidth, along with a narrowband 532 nm pump/probe beam. A simultaneous shot-to-shot nonresonant background (NRB) measurement is implemented to account for Stokes spectral profile and beam overlap fluctuations. The 100 kHz ps-VCARS data are benchmarked in a near-adiabatic CH4/air Hencken calibration flame with an accuracy of 1.5% and precision of 4.7% up to peak flame temperatures. The use of N2 VCARS and simultaneous NRB measurements enables high-speed thermometry for a wide range of fuels and combustion applications.

11.
Opt Express ; 29(13): 21011-21019, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266176

RESUMEN

Rotationally resolved, broadband absorption spectra of the fundamental vibrational transition of the asymmetric C-H stretch mode of methane are measured under single-laser-shot conditions using time-resolved optically gated absorption (TOGA). The TOGA approach exploits the difference in timescales between a broadband, fs-duration excitation source and the ps-duration absorption features induced by molecular absorption to allow effective suppression of the broadband background spectrum, thereby allowing for sensitive detection of multi-transition molecular spectra. This work extends the TOGA approach into the mid-infrared (mid-IR) spectral regime, allowing access to fundamental vibrational transitions while providing broadband access to multiple mid-IR transitions spanning ∼150 cm-1 (∼160 nm) near 3.3 µm, thereby highlighting the robustness of this technique beyond previously demonstrated electronic spectroscopy. Measurements are conducted in a heated gas cell to determine the accuracy of the simultaneous temperature and species-concentration measurements afforded by this single-shot approach in a well-characterized environment. Application of this approach toward fuel-rich methane-nitrogen-oxygen flames is also demonstrated.

12.
Appl Opt ; 60(15): C1-C7, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143099

RESUMEN

10 kHz two-color OH planar laser-induced fluorescence (PLIF) thermometry was demonstrated in both laminar Hencken flames and turbulent premixed jet flames using two injection-seeded optical parametric oscillators (OPOs) pumped by a high-speed three-legged burst-mode laser. The two burst-mode OPOs generate ∼5mJ/pulse at 282 nm and 286 nm to excite the Q1(5) and Q1(14) transitions of the A2Σ+←X2Π (1,0) system of OH, respectively. PLIF images were collected simultaneously from each of the two transitions and ratios of intensities from the two images were used to determine local temperatures. Analyses of flame curvature, temperature, and the correlation in time of these two quantities are also discussed. The results from this work are promising for the use of this technique in more complex flow environments and at, potentially, even higher repetition rate.

13.
Appl Opt ; 60(15): C32-C37, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143103

RESUMEN

Multiphoton-resonance enhancement of a rare-gas-assisted nitrogen femtosecond-laser electronic-excitation-tagging (FLEET) signal is demonstrated. The FLEET signal is ideal for velocimetric tracking of nitrogen gas in flow environments by virtue of its long-lived nature. By tuning to three-photon-resonant transitions of argon, energy can be more efficiently deposited into the mixture, thereby producing a stronger and longer-lived FLEET signal following subsequent efficient energy transfer from excited-state argon to the C (3Πu) excited state of nitrogen. Such resonant excitation exhibits as much as an order of magnitude increase in this rare-gas-assisted FLEET signal, compared to near-resonance excitation of seeded argon demonstrated in previous work, while reducing the required input excitation-pulse energies by two orders of magnitude compared to traditional FLEET.

14.
Appl Opt ; 60(15): C38-C46, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143104

RESUMEN

Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used in the boundary layer of an ogive-cylinder model in a Mach-6 Ludwieg tube. One-dimensional velocity profiles were extracted from the FLEET signal in laminar boundary layers from pure N2 flows at unit Reynolds numbers ranging from 3.4×106/m to3.9×106/m. The effects of model tip bluntness and the unit Reynolds number on the velocity profiles were investigated. The challenges and strategies of applying FLEET for direct boundary layer velocity measurement are discussed. The potential of utilizing FLEET velocimetry for understanding the dynamics of laminar and turbulent boundary layers in hypersonic flows is demonstrated.

15.
Appl Opt ; 60(15): C47-C54, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143105

RESUMEN

A compact fiber-coupled hyperspectral imaging sensor (HSIS) operating within the range of ultraviolet to near-infrared (UV-NIR) wavelengths is designed and developed for the remote recording of two-dimensional (2D) spectrally resolved thermal radiation and chemiluminescent emission from ultra-high-temperature ceramics (UHTCs). Using simulations, the entire system is optimized to improve the collection efficiency and minimize aberrations. The design, construction, and characterization of the HSIS sensor are discussed in detail. We present the 2D spectrally resolved measurements of the simultaneous thermal radiation and BO2∗ chemiluminescent emission from a commonly used UHTC (HfB2-SiC) material under high-heat-flux conditions. Our results show that BO2∗ chemiluminescence corresponds directly to material ablation and can be used to track the formation of the protective heat-resistant glass/oxide layer. Furthermore, the temperature measurements demonstrate the heat distribution properties of the sample and indicate the locations at which BO2∗ chemiluminescence is possible. These results highlight the application prospects of the compact fiber-coupled HSIS for high-temperature material characterization in practical arc-jet facilities with limited optical access.

16.
Appl Opt ; 60(15): C60-C67, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143107

RESUMEN

Detailed characterizations of picosecond laser electronic excitation tagging (PLEET) in pure nitrogen (N2) and air with a 24 ps burst-mode laser system have been conducted. The burst-mode laser system is seeded with a 200 fs broadband seeding laser to achieve short pulse duration. As a non-intrusive molecular tagging velocimetry (MTV) technique, PLEET achieves "writing" via photo-dissociating nitrogen molecules and "tracking" by imaging the molecular nitrogen emissions. Key characteristics and performance of utilization of a 24 ps pulse-burst laser for MTV were obtained, including lifetime of the nitrogen emissions, power dependence, pressure dependence, and local flow heating by the laser pulses. Based on the experimental results and physical mechanisms of PLEET, 24 ps PLEET can produce similar 100 kHz molecular nitrogen emissions by photodissociation, while generating less flow disturbance by reducing laser joule heating than 100 ps PLEET.

17.
Appl Opt ; 60(15): C114-C120, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143118

RESUMEN

A study of short-gated 10 nanosecond (ns), 100 picosecond (ps), and 100 femtosecond (fs) laser induced breakdown spectroscopy (LIBS) was conducted for fuel-to-air ratio (FAR) measurements in an atmospheric Hencken flame. The intent of the work is to understand which emission lines are available near the optical range in each pulse width regime and which emission ratios may be favorable for generating equivalence ratio calibration curves. The emission spectra in the range of 550-800 nm for ns-LIBS and ps-LIBS are mostly similar with slightly elevated atomic oxygen lines by ps-LIBS. Spectra from fs-LIBS show the lowest continuum background and prominent individual atomic lines, though have significantly weaker ionic emission from nitrogen. A qualitative explanation based on assumed local thermodynamic equilibrium and electron temperatures calculated by the ${{\rm{N}}_{\rm{II}}}({{565}}\;{\rm{nm}})$ and ${{\rm{N}}_{\rm{II}}}({{594}}\;{\rm{nm}})$ emissions is presented. In studying line emission ratios for FAR calculation, it is found that ${{\rm{H}}_\alpha}({{656}}\;{\rm{nm}})/{{\rm{N}}_{\rm{II}}}({{568}}\;{\rm{nm}})$ is best for FAR measurements with ns-LIBS and remains viable for ps-LIBS, while ${{\rm{H}}_\alpha}({{656}}\;{\rm{nm}})/{{\rm{O}}_{\rm I}}({{777}}\;{\rm{nm}})$ is optimal for the ps-LIBS and fs-LIBS cases. Due to low continuum background and short time delay for spectra collection, fs-LIBS is very promising for high-speed FAR measurements using short-gated LIBS.

18.
Appl Opt ; 60(15): C121-C130, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143119

RESUMEN

Nonintrusive three-component (3C) velocity measurements of free jet flows were conducted by stereoscopic picosecond laser electronic excitation tagging (S-PLEET) at 100 kHz. The fundamental frequency of the burst-mode laser at 1064 nm was focused to generate the PLEET signal in a free jet flow. A stereoscopic imaging system was used to capture the PLEET signals. The 3C centroids of the PLEET signal were determined by utilizing simultaneous images from two cameras placed at an angle. The temporal evolutions of the centroids were obtained and used to determine the instantaneous, time-resolved 3C velocities of the flows. The free jets with various inlet pressures of 10-40 bars exhausting into atmospheric pressure air (i.e., underexpanded free jet with large pressure ratios; Reynolds numbers from the jet ranged from 39,000 to 145,000) were measured by S-PLEET. Key 3C turbulent properties of the free jets, including instantaneous and mean velocities, were obtained with an instantaneous measurement uncertainty of about ${\rm{\pm 10}}\;{\rm{m/s}}$, which is about 2% of the highest velocities measured. Computation of higher-order statistics including covariances related to turbulent kinetic energy and the Reynolds stress component was demonstrated. The 3C nonintrusive and unseeded velocimetry technique could provide a new tool for flow property measurements in ground test facilities; the measured high-frequency turbulence properties of free jet flows could be useful for turbulence modeling and validations.

19.
Opt Lett ; 46(10): 2308-2311, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988570

RESUMEN

10-kHz hydroxyl radical (OH) two-color planar laser-induced fluorescence (TC-PLIF) thermometry was demonstrated with a single burst-mode optical parametric oscillator (OPO) and a single camera. A fast, dual-wavelength switched seed laser enabled a high-energy, high-repetition-rate burst-mode laser to generate two 10-kHz pulse trains at wavelengths of ${\sim}{354.8}\;{\rm nm}$. The two pulse trains are colinear with 3 µs time interval between the pulse pairs. The injection-seeded OPO efficiently converts the burst-mode laser output to 285.62 and 285.67 nm to excite the ${Q}_2({12})$ and ${P}_1({8})$ OH transitions. PLIF images were collected from each of the two excitation transitions, and intensity ratios from the images were used to determine local temperatures. The development of fast, dual-wavelength switching, burst-mode OPO technology significantly reduces the experimental complexity of the high-speed TC-PLIF thermometry and simplifies its implementation in harsh combustion and flow test facilities.

20.
Appl Opt ; 60(4): 1051-1058, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690411

RESUMEN

Nanosecond electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) is evaluated for the measurement of formaldehyde (CH2O) concentrations in reacting and nonreacting conditions. The three-color scheme utilizes a 532 nm pump beam and a scanned Stokes beam near 624 nm for Raman excitation of the C-H symmetric stretch (ν1) vibrational mode; further, a 342 nm resonant probe is tuned to produce the outgoing CARS signal via the 101403 vibronic transition between the ground (X~1A1) and first excited (A~1A2) electronic states. This allows detection of CH2O at concentrations as low as 9×1014molecules/cm3 (55 parts per million) in a calibration cell with CH2O and N2 at 1 bar and 450 K with 3% uncertainty. The measurements show a quadratic dependence of the signal with CH2O number density. Pressure scaling experiments up to 11 bar in the calibration cell show an increase in signal up to 8 bar. We study pressure dependence up to 11 bar and further apply the technique to characterize the CH2O concentration in an atmospheric premixed dimethyl ether/air McKenna burner flame, with a maximum concentration uncertainty of 11%. This approach demonstrates the feasibility for spatially resolved measurements of minor species such as CH2O in reactive environments and shows promise for application in high-pressure combustors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...