Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 36(1): 76-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33097289

RESUMEN

Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.


Asunto(s)
Ecosistema , Cadena Alimentaria , Cambio Climático , Explotaciones Pesqueras
2.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186360

RESUMEN

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...