Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 82: 102673, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37595512

RESUMEN

Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.


Asunto(s)
Imagen Óptica , Diferenciación Celular
2.
Proc Natl Acad Sci U S A ; 120(26): e2215556120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339210

RESUMEN

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.


Asunto(s)
Anticodón , ARN , Conformación de Ácido Nucleico , Dispersión del Ángulo Pequeño , Difracción de Rayos X , ARN de Transferencia de Lisina/química
3.
J Phys Chem B ; 126(50): 10597-10607, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36455152

RESUMEN

Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 µs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
5.
PLoS Biol ; 20(3): e3001548, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239649

RESUMEN

Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Saccharomyces cerevisiae, is strongly influenced by nutrient availability. To identify new dominant activators of Start that might operate under different nutrient conditions, we screened a genome-wide ORF overexpression library for genes that bypass a Start arrest caused by absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypothetical gene YLR053c, renamed NRS1 for Nitrogen-Responsive Start regulator 1, which encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition, and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and SWI6, which encode subunits of the main G1/S transcription factor complex SBF. Correspondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S promoter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen conditions.


Asunto(s)
Fase G1/genética , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , División Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Immunoblotting , Unión Proteica , RNA-Seq/métodos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Proteins ; 90(6): 1331-1345, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122336

RESUMEN

Dissimilatory sulfite reductase is an ancient enzyme that has linked the global sulfur and carbon biogeochemical cycles since at least 3.47 Gya. While much has been learned about the phylogenetic distribution and diversity of DsrAB across environmental gradients, far less is known about the structural changes that occurred to maintain DsrAB function as the enzyme accompanied diversification of sulfate/sulfite reducing organisms (SRO) into new environments. Analyses of available crystal structures of DsrAB from Archaeoglobus fulgidus and Desulfovibrio vulgaris, representing early and late evolving lineages, respectively, show that certain features of DsrAB are structurally conserved, including active siro-heme binding motifs. Whether such structural features are conserved among DsrAB recovered from varied environments, including hot spring environments that host representatives of the earliest evolving SRO lineage (e.g., MV2-Eury), is not known. To begin to overcome these gaps in our understanding of the evolution of DsrAB, structural models from MV2.Eury were generated and evolutionary sequence co-variance analyses were conducted on a curated DsrAB database. Phylogenetically diverse DsrAB harbor many conserved functional residues including those that ligate active siro-heme(s). However, evolutionary co-variance analysis of monomeric DsrAB subunits revealed several False Positive Evolutionary Couplings (FPEC) that correspond to residues that have co-evolved despite being too spatially distant in the monomeric structure to allow for direct contact. One set of FPECs corresponds to residues that form a structural path between the two active siro-heme moieties across the interface between heterodimers, suggesting the potential for allostery or electron transfer within the enzyme complex. Other FPECs correspond to structural loops and gaps that may have been selected to stabilize enzyme function in different environments. These structural bioinformatics results suggest that DsrAB has maintained allosteric communication pathways between subunits as SRO diversified into new environments. The observations outlined here provide a framework for future biochemical and structural analyses of DsrAB to examine potential allosteric control of this enzyme.


Asunto(s)
Hidrogenosulfito Reductasa , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Hemo/química , Hidrogenosulfito Reductasa/genética , Hidrogenosulfito Reductasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Filogenia , Sulfatos/química , Sulfatos/metabolismo
7.
Biophys J ; 121(3): 421-429, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34971617

RESUMEN

Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.


Asunto(s)
Aptámeros de Nucleótidos , Mangifera , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Mangifera/química , Mangifera/genética , Mangifera/metabolismo , ARN/química , Pliegue del ARN
8.
Biophys J ; 120(12): 2592-2598, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33961866

RESUMEN

The relationship between the dimensions of pressure-unfolded states of proteins compared with those at ambient pressure is controversial; resolving this issue is related directly to the mechanisms of pressure denaturation. Moreover, a significant pressure dependence of the compactness of unfolded states would complicate the interpretation of folding parameters from pressure perturbation and make comparison to those obtained using alternative perturbation approaches difficult. Here, we determined the compactness of the pressure-unfolded state of a small, cooperatively folding model protein, CTL9-I98A, as a function of temperature. This protein undergoes both thermal unfolding and cold denaturation, and the temperature dependence of the compactness at atmospheric pressure is known. High-pressure small angle x-ray scattering studies, yielding the radius of gyration and high-pressure diffusion ordered spectroscopy NMR experiments, yielding the hydrodynamic radius were carried out as a function of temperature at 250 MPa, a pressure at which the protein is unfolded. The radius of gyration values obtained at any given temperature at 250 MPa were similar to those reported previously at ambient pressure, and the trends with temperature are similar as well, although the pressure-unfolded state appears to undergo more pronounced expansion at high temperature than the unfolded state at atmospheric pressure. At 250 MPa, the compaction of the unfolded chain was maximal between 25 and 30°C, and the chain expanded upon both cooling and heating. These results reveal that the pressure-unfolded state of this protein is very similar to that observed at ambient pressure, demonstrating that pressure perturbation represents a powerful approach for observing the unfolded states of proteins under otherwise near-native conditions.


Asunto(s)
Frío , Proteínas Ribosómicas , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Temperatura
9.
Cell Rep ; 35(7): 109133, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33984267

RESUMEN

Effective control of COVID-19 requires antivirals directed against SARS-CoV-2. We assessed 10 hepatitis C virus (HCV) protease-inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS-CoV-2 main protease (Mpro) and HCV NS3/4A protease. Virtual docking experiments show that these HCV drugs can potentially bind into the Mpro substrate-binding cleft. We show that seven HCV drugs inhibit both SARS-CoV-2 Mpro protease activity and SARS-CoV-2 virus replication in Vero and/or human cells. However, their Mpro inhibiting activities did not correlate with their antiviral activities. This conundrum is resolved by demonstrating that four HCV protease inhibitor drugs, simeprevir, vaniprevir, paritaprevir, and grazoprevir inhibit the SARS CoV-2 papain-like protease (PLpro). HCV drugs that inhibit PLpro synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, increasing remdesivir's antiviral activity as much as 10-fold, while those that only inhibit Mpro do not synergize with remdesivir.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , COVID-19/virología , Técnicas de Cultivo de Célula , Línea Celular , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Reposicionamiento de Medicamentos/métodos , Sinergismo Farmacológico , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Replicación Viral/efectos de los fármacos
10.
Annu Rev Biophys ; 50: 343-372, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33637008

RESUMEN

Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.


Asunto(s)
Ambientes Extremos , Animales , Biofisica , Extremófilos , Humanos , Temperatura
11.
DNA Repair (Amst) ; 97: 103009, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220536

RESUMEN

Mrr from Escherichia coli K12 is a type IV restriction endonuclease whose role is to recognize and cleave foreign methylated DNA. Beyond this protective role, Mrr can inflict chromosomal DNA damage that elicits the SOS response in the host cell upon heterologous expression of specific methyltransferases such as M.HhaII, or after exposure to high pressure (HP). Activation of Mrr in response to these perturbations involves an oligomeric switch that dissociates inactive homo-tetramers into active dimers. Here we used scanning number and brightness (sN&B) analysis to determine in vivo the stoichiometry of a constitutively active Mrr mutant predicted to be dimeric and examine other GFP-Mrr mutants compromised in their response to either M.HhaII activity or HP shock. We also observed in vitro the direct pressure-induced tetramer dissociation by HP fluorescence correlation spectroscopy of purified GFP-Mrr. To shed light on the linkages between subunit interactions and activity of Mrr and its variants, we built a structural model of the full-length tetramer bound to DNA. Similar to functionally related endonucleases, the conserved DNA cleavage domain would be sequestered by the DNA recognition domain in the Mrr inactive tetramer, dissociating into an enzymatically active dimer upon interaction with multiple DNA sites.


Asunto(s)
Enzimas de Restricción del ADN/genética , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Respuesta SOS en Genética , Daño del ADN , Enzimas de Restricción del ADN/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Presión , Conformación Proteica
12.
Biophys J ; 118(11): 2670-2679, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402241

RESUMEN

The majority of the Earth's microbial biomass exists in the deep biosphere, in the deep ocean, and within the Earth's crust. Although other physical parameters in these environments, such as temperature or pH, can differ substantially, they are all under high pressures. Beyond emerging genomic information, little is known about the molecular mechanisms underlying the ability of these organisms to survive and grow at pressures that can reach over 1000-fold the pressure on the Earth's surface. The mechanisms of pressure adaptation are also important in food safety, with the increasing use of high-pressure food processing. Advanced imaging represents an important tool for exploring microbial adaptation and response to environmental changes. Here, we describe implementation of a high-pressure sample chamber with a two-photon scanning microscope system, allowing for the first time, to our knowledge, quantitative high-resolution two-photon imaging at 100 MPa of living microbes from all three kingdoms of life. We adapted this setup for fluorescence lifetime imaging microscopy with phasor analysis (FLIM/Phasor) and investigated metabolic responses to pressure of live cells from mesophilic yeast and bacterial strains, as well as the piezophilic archaeon Archaeoglobus fulgidus. We also monitored by fluorescence intensity fluctuation-based methods (scanning number and brightness and raster scanning imaging correlation spectroscopy) the effect of pressure on the chromosome-associated protein HU and on the ParB partition protein in Escherichia coli, revealing partially reversible dissociation of ParB foci and concomitant nucleoid condensation. These results provide a proof of principle that quantitative, high-resolution imaging of live microbial cells can be carried out at pressures equivalent to those in the deepest ocean trenches.


Asunto(s)
Bacterias , Proteínas , Presión Hidrostática , Temperatura
13.
Protein Sci ; 28(7): 1210-1221, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31012169

RESUMEN

Quantitative characterization of protein interactions, both intramolecular and intermolecular, is crucial in understanding the mechanisms and regulation of their function. In recent years, it has become possible to obtain such information on protein systems in live cells, from bacteria to mammalian cell lines. This review discusses recent advances in measuring protein folding, absolute concentration, oligomerization, diffusion, transport, and organization at super-resolution.


Asunto(s)
Células/química , Proteínas/análisis , Animales , Bacterias/química , Bacterias/metabolismo , Células/metabolismo , Difusión , Humanos , Microscopía Fluorescente , Pliegue de Proteína , Proteínas/metabolismo
14.
Methods Enzymol ; 614: 293-320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30611428

RESUMEN

Protein conformational landscapes define their functional properties as well as their proteostasis. Hence, detailed mapping of these landscapes is necessary to understand and modulate protein conformation. The combination of high pressure and NMR provides a particularly powerful approach to characterizing protein conformational transitions. First, pressure, because its effects on protein structure arise from elimination of solvent excluded void volume, represents a more subtle perturbation than chemical denaturants, favoring the population of intermediates. Second, the residue-specific and multifaceted nature of NMR observables informs on many local structural properties of proteins, aiding in the characterization of intermediate and excited states.


Asunto(s)
Conectina/química , Péptidos y Proteínas de Señalización Intracelular/química , Resonancia Magnética Nuclear Biomolecular/métodos , Sitios de Unión , Humanos , Modelos Moleculares , Proteínas Nucleares , Presión , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Desplegamiento Proteico , Proteínas de Unión al ARN , Termodinámica
15.
Biophys J ; 116(3): 445-453, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685054

RESUMEN

The observation of two-state unfolding for many small single-domain proteins by denaturants has led to speculation that protein sequences may have evolved to limit the population of partially folded states that could be detrimental to fitness. How such strong cooperativity arises from a multitude of individual interactions is not well understood. Here, we investigate the stability and folding cooperativity of the C-terminal domain of the ribosomal protein L9 in the pressure-temperature plane using site-specific NMR. In contrast to apparent cooperative unfolding detected with denaturant-induced and thermal-induced unfolding experiments and stopped-flow refolding studies at ambient pressure, NMR-detected pressure unfolding revealed significant deviation from two-state behavior, with a core region that was selectively destabilized by increasing temperature. Comparison of pressure-dependent NMR signals from both the folded and unfolded states revealed the population of at least one invisible excited state at atmospheric pressure. The core destabilizing cavity-creating I98A mutation apparently increased the cooperativity of the loss of folded-state peak intensity while also increasing the population of this invisible excited state present at atmospheric pressure. These observations highlight how local stability is subtly modulated by sequence to tune protein conformational landscapes and illustrate the ability of pressure- and temperature-dependent studies to reveal otherwise hidden states.


Asunto(s)
Presión , Proteínas Ribosómicas/química , Temperatura , Cinética , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Ribosómicas/genética
16.
J R Soc Interface ; 15(147)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282759

RESUMEN

Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.


Asunto(s)
Presión , Desnaturalización Proteica , Proteínas/química , Animales , Estabilidad Proteica , Termodinámica
17.
Proc Natl Acad Sci U S A ; 115(35): E8153-E8161, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104366

RESUMEN

The effect of introducing internal cavities on protein native structure and global stability has been well documented, but the consequences of these packing defects on folding free-energy landscapes have received less attention. We investigated the effects of cavity creation on the folding landscape of the leucine-rich repeat protein pp32 by high-pressure (HP) and urea-dependent NMR and high-pressure small-angle X-ray scattering (HPSAXS). Despite a modest global energetic perturbation, cavity creation in the N-terminal capping motif (N-cap) resulted in very strong deviation from two-state unfolding behavior. In contrast, introduction of a cavity in the most stable, C-terminal half of pp32 led to highly concerted unfolding, presumably because the decrease in stability by the mutations attenuated the N- to C-terminal stability gradient present in WT pp32. Interestingly, enlarging the central cavity of the protein led to the population under pressure of a distinct intermediate in which the N-cap and repeats 1-4 were nearly completely unfolded, while the fifth repeat and the C-terminal capping motif remained fully folded. Thus, despite modest effects on global stability, introducing internal cavities can have starkly distinct repercussions on the conformational landscape of a protein, depending on their structural and energetic context.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Proteínas de Unión al ARN , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
18.
Chemistry ; 24(54): 14346-14351, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-29993151

RESUMEN

Organisms are thriving in the deep sea at pressures up to the 1 kbar level, which imposes severe stress on the conformational dynamics and stability of their biomolecules. The impact of osmolytes and macromolecular crowders, mimicking intracellular conditions, on the effect of pressure on the conformational dynamics of a human telomeric G-quadruplex (G4) DNA is explored in this study employing single-molecule Förster resonance energy transfer (FRET) experiments. In neat buffer, pressurization favors the parallel/hybrid state of the G4-DNA over the antiparallel conformation at ≈400 bar, finally leading to unfolding beyond 1000 bar. High-pressure NMR data support these findings. The folded topological conformers have different solvent accessible surface areas and cavity volumes, leading to different volumetric properties and hence pressure stabilities. The deep-sea osmolyte trimethylamine N-oxide (TMAO) and macromolecular crowding agents are able to effectively rescue the G4-DNA from unfolding in the whole pressure range encountered on Earth.

19.
Sci Rep ; 8(1): 10414, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991736

RESUMEN

G protein coupled receptors (GPCRs) play essential roles in intercellular communication. Although reported two decades ago, the assembly of GPCRs into dimer and larger oligomers in their native environment is still a matter of intense debate. Here, using number and brightness analysis of fluorescently labeled receptors in cultured hippocampal neurons, we confirm that the metabotropic glutamate receptor type 2 (mGlu2) is a homodimer at expression levels in the physiological range, while heterodimeric GABAB receptors form larger complexes. Surprisingly, we observed the formation of larger mGlu2 oligomers upon both activation and inhibition of the receptor. Stabilizing the receptor in its inactive conformation using biochemical constraints also led to the observation of oligomers. Following our recent observation that mGlu receptors are in constant and rapid equilibrium between several states under basal conditions, we propose that this structural heterogeneity limits receptor oligomerization. Such assemblies are expected to stabilize either the active or the inactive state of the receptor.


Asunto(s)
Neuronas/química , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Receptores de GABA-B/química , Hipocampo/química , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Multimerización de Proteína/genética , Receptores Acoplados a Proteínas G/genética , Receptores de GABA-B/metabolismo , Transducción de Señal
20.
J Biol Chem ; 293(31): 12248-12258, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29903908

RESUMEN

Most members of the TransMEMbrane protein 16 (TMEM16) family are Ca2+-regulated scramblases that facilitate the bidirectional movement of phospholipids across membranes necessary for diverse physiological processes. The nhTMEM16 scramblase (from the fungus Nectria hematococca) is a homodimer with a large cytoplasmic region and a hydrophilic, membrane-exposed groove in each monomer. The groove provides the transbilayer conduit for lipids, but the mechanism by which Ca2+ regulates it is not clear. Because fusion of large protein tags at either the N or C terminus abolishes nhTMEM16 activity, we hypothesized that its cytoplasmic portion containing both termini may regulate lipid translocation via a Ca2+-dependent conformational change. To test this hypothesis, here we used fluorescence methods to map key distances within the nhTMEM16 homodimer and between its termini and the membrane. To this end, we developed functional nhTMEM16 variants bearing an acyl carrier protein (ACP) tag at one or both of the termini. These constructs were fluorescently labeled by ACP synthase-mediated insertion of CoA-conjugated fluorophores and reconstituted into vesicles containing fluorescent lipids to obtain the distance of closest approach between the labeled tag and the membrane via FRET. Fluorescence lifetime measurements with phasor analysis were used to determine the distance between the N and C termini of partnering monomers in the nhTMEM16 homodimer. We now report that the measured distances do not vary significantly between Ca2+-replete and EGTA-treated samples, indicating that whereas the cytoplasmic portion of the protein is important for function, it does not appear to regulate scramblase activity via a detectable conformational change.


Asunto(s)
Anoctaminas/química , Anoctaminas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Nectria/enzimología , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Anoctaminas/genética , Transporte Biológico , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/enzimología , Membrana Celular/metabolismo , Dimerización , Fluorescencia , Proteínas Fúngicas/genética , Membrana Dobles de Lípidos/química , Nectria/química , Nectria/genética , Proteínas de Transferencia de Fosfolípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...