Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(15): 7387-7395, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38545886

RESUMEN

Inorganic cesium lead bromide nanocrystals (CsPbBr3 NCs) hold promising prospects for high performance green light-emitting diodes (LEDs) due to their exceptional color purity and high luminescence efficiency. However, the common ligands employed for passivating these indispensable NCs, such as long-chain organic ligands like oleic acid and oleylamine (OA/OAm), display highly dynamic binding and electronic insulating issues, thereby resulting in a low efficiency of the as-fabricated LEDs. Herein, we report a new zwitterionic short-branched alkyl sulfobetaine ligand, namely trioctyl(propyl-3-sulfonate) ammonium betaine (TOAB), to in situ passivate CsPbBr3 NCs via a feasible one-step solution synthesis, enabling efficiency improvement of CsPbBr3 NC-based LEDs. The zwitterionic TOAB ligand not only strengthened the surface passivation of CsPbBr3 NCs with a high photoluminescence quantum yield (PLQY) of 97%, but also enhanced the carrier transport in the fabricated CsPbBr3 NC thin films due to the short-branched alkyl design. Consequently, CsPbBr3 NCs passivated with TOAB achieved a green LED with an external quantum efficiency (EQE) of 7.3% and a maximum luminance of 5716 cd m-2, surpassing those of LEDs based on insulating long-chain ligand-passivated NCs. Our work provides an effective surface passivation ligand design to enhance the performance of CsPbBr3 NC-based LEDs.

2.
Nano Lett ; 23(8): 3385-3393, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052258

RESUMEN

Lead halide perovskite nanocrystals (LHP NCs) are regarded as promising emitters for next-generation ultrahigh-definition displays due to their high color purity and wide color gamut. Recently, the external quantum efficiency (EQE) of LHP NC based light-emitting diodes (PNC LEDs) has been rapidly improved to a level required by practical applications. However, the poor operational stability of the device, caused by halide ion migration at the grain boundary of LHP NC thin films, remains a great challenge. Herein, we report a resurfacing strategy via pseudohalogen ions to mitigate detrimental halide ion migration, aiming to stabilize PNC LEDs. We employ a thiocyanate solution processed post-treatment method to efficiently resurface CsPbBr3 NCs and demonstrate that the thiocyanate ions can effectively inhibit bromide ion migration in LHP NC thin films. Owing to thiocyanate resurfacing, we fabricated LEDs with a high EQE of 17.3%, a maximum brightness of 48000 cd m-2, and an excellent operation half-life time.

3.
Sci Adv ; 8(45): eabq2321, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367940

RESUMEN

Solution-processable all-inorganic CsPbI3-xBrx perovskite holds great potential for pure red light-emitting diodes. However, the widely existing defects in this mixed halide perovskite markedly limit the efficiency and stability of present light-emitting diode devices. We here identify that intragrain Ruddlesden-Popper planar defects are primary forms of such defects in the CsPbI3-xBrx thin film owing to the lattice strain caused by inhomogeneous halogen ion distribution. To eliminate these defects, we develop a stepwise metastable phase crystallization strategy to minimize the CsPbI3-xBrx perovskite lattice strain, which brings planar defect-free CsPbI3-xBrx thin film with improved radiative recombination, narrowed emission band, and enhanced spectral stability. Using these high-quality thin films, we fabricate spectrally stable pure red perovskite light-emitting diodes, showing 17.8% external quantum efficiency and 9000 candela meter-2 brightness with color coordinates required by Rec. 2020.

4.
Angew Chem Int Ed Engl ; 61(38): e202208960, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35861476

RESUMEN

Thermochromic phosphors are intriguing materials for realizing thermochromic behaviors of light-emitting diodes. Here a highly luminescent and stable thermochromic phosphor based on one-dimensional Cu4 I6 (4-dimethylamino-1-ethylpyridinium)2 is reported. This unique ionic copper-iodine chain-based hybrid exhibits near-unity photoluminescence efficiency owing to the through-space charge-transfer character of relevant electronic transitions. More importantly, an alternative mechanism of thermochromic phosphorescence was unraveled, supported by a first principles simulation of concerted copper atom migration in the copper-iodine chain. Furthermore, we successfully fabricate a bright thermochromic light-emitting diode using this Cu4 I6 (4-dimethylamino-1-ethylpyridinium)2 thermochromic phosphor. Our reported flexible ionic copper-iodine chain-based thermochromic luminescent material represents a new type of cost-effective functional phosphor.

5.
J Am Chem Soc ; 144(18): 8162-8170, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35442667

RESUMEN

All-inorganic CsPbI3 perovskite is attractive for deep-red light-emitting diodes (LEDs) because of its excellent carrier mobility, high color purity, and solution processability. However, the high phase transition energy barrier of optically active CsPbI3 black phase hinders the fabrication of efficient and bright LEDs. Here, we report a novel α-BaF2 nanoparticle substrate-promoted solution-processable heteroepitaxial growth to overcome this hindrance and obtain high-quality optically active γ-CsPbI3 thin films, achieving efficient and bright deep-red LEDs. We unravel that the highly exposed planes on the α-BaF2 nanoparticle-based heteroepitaxial growth substrate have a 99.5% lattice matching degree with the (110) planes of γ-CsPbI3. This ultrahigh lattice matching degree initiates solution-processed interfacial strain-free epitaxial growth of low-defect and highly oriented γ-CsPbI3 thin films on the substrate. The obtained γ-CsPbI3 thin films are uniform, smooth, and highly luminescent, based on which we fabricate efficient and bright deep-red LEDs with a high peak external quantum efficiency of 14.1% and a record luminance of 1325 cd m-2.

6.
J Am Chem Soc ; 143(47): 19928-19937, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766754

RESUMEN

Lead halide perovskite nanocrystals (PNCs) are emerging as promising light emitters to be actively explored for high color purity and efficient light-emitting diodes. However, the most reported lead halide perovskite nanocrystal light-emitting diodes (PNCLEDs) encountered issues of emission line width broadening and operation voltage elevating caused by the quantum confinement effect. Here, we report a new type of PNCLED using large-size CsPbBr3 PNCs overly exceeding the Bohr exciton diameter, achieving ultranarrow emission line width and rapid brightness rise around the turn-on voltage. We adopt calcium-tributylphosphine oxide hybrid ligand passivation to produce highly dispersed large-size colloidal CsPbBr3 PNCs with a weak size confinement effect and also high photoluminescence quantum yield (∼85%). Utilizing these large-size PNCs as emitters, we manifest that the detrimental effects caused by the quantum confinement effect can be avoided in the device, thereby realizing the highest color purity in green PNCLED, with a narrow full width at half-maximum of 16.4 nm and a high corrected maximum external quantum efficiency of 17.85%. Moreover, the operation half-life time of the large-size PNCLED is 5-fold of that based on smaller-size PNCs. Our work provides a new avenue for improving the performance of PNCLEDs based on unconventional large-size effects.

7.
Nano Lett ; 21(20): 8756-8763, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34637318

RESUMEN

Metal halide perovskites are promising semiconductors for next-generation light-emitting diodes (LEDs) due to their high luminance, excellent color purity, and handily tunable band gap. However, it remains a great challenge to develop perovskite LEDs (PeLEDs) with pure red emission at the wavelength of 630 nm. Herein, we report a spectrally stable and efficient pure red PeLED by employing sequential ligand post-treated CsPbI3 quantum dots (QDs). The synthesized CsPbI3 QDs with a size of ∼5 nm are treated in sequential steps using the ligands of 1-hydroxy-3-phenylpropan-2-aminium iodide (HPAI) and tributylsulfonium iodide (TBSI), respectively. The CsPbI3 QD films exhibit improved optoelectronic properties, which enables the fabrication of a pure red PeLED with a peak external quantum efficiency (EQE) of 6.4% and a stable EL emission centered at the wavelength of 630 nm. Our reported sequential ligand post-treatment strategy opens a new route to improve the stability and efficiency of PeLEDs based on QDs.

8.
J Phys Chem Lett ; 11(21): 9371-9378, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33095581

RESUMEN

All-inorganic cesium lead halide perovskite colloidal nanocrystals are attractive for next-generation light-emitting diodes because of their high color purity, but the nonradiative Auger recombination in perovskite nanocrystal film limits the efficiency and brightness of the fabricated devices. Here, we introduce a surface-engineering process to exchange the original long-chain oleic acid/oleylamine ligands by the cerium-tributylphosphine oxide hybrid ligands to suppress nonradiative Auger recombination in CsPbBr3 NC film for bright and low-efficiency roll-off light-emitting diodes. Using ultrafast transient absorption and time-resolved photoluminescence spectroscopy, we demonstrate that the hybrid ligand passivation can efficiently remove surface trap states to enhance radiative recombination and homogenize the exciton concentration to suppress nonradiative Auger recombination in the CsPbBr3 nanocrystal thin film. Consequently, we fabricate a light-emitting diode with efficient charge injection into the CsPbBr3 nanocrystal emitting layer, achieving a pronounced improvement of electroluminescence with an external quantum efficiency from 5.5% to 9.1%. More importantly, the efficiency roll-off characteristics of high-brightness light-emitting diodes is effectively mitigated. Our reported hybrid ligand passivation suppressed Auger recombination strategy shows a great potential for fabricating high-brightness cesium lead halide perovskite light-emitting diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...