Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 186(1): 534-548, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33620498

RESUMEN

In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Proteínas de Dominio MADS/genética , Proteínas Represoras/genética , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas Represoras/metabolismo , Plantones/genética , Semillas/genética
2.
Nucleic Acids Res ; 49(1): 98-113, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33270882

RESUMEN

The Polycomb repressive complex 2 (PRC2) catalyzes histone H3 Lys27 trimethylation (H3K27me3) to repress gene transcription in multicellular eukaryotes. Despite its importance in gene silencing and cellular differentiation, how PRC2 is recruited to target loci is still not fully understood. Here, we report genome-wide evidence for the recruitment of PRC2 by the transcriptional repressors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 in Arabidopsis thaliana. We show that the val1 val2 double mutant possesses somatic embryonic phenotypes and a transcriptome strikingly similar to those of the swn clf double mutant, which lacks the PRC2 catalytic subunits SWINGER (SWN) and CURLY LEAF (CLF). We further show that VAL1 and VAL2 physically interact with SWN and CLF in vivo. Genome-wide binding profiling demonstrated that they colocalize with SWN and CLF at PRC2 target loci. Loss of VAL1/2 significantly reduces SWN and CLF enrichment at PRC2 target loci and leads to a genome-wide redistribution of H3K27me3 that strongly affects transcription. Finally, we provide evidence that the VAL1/VAL2-RY regulatory system is largely independent of previously identified modules for Polycomb silencing in plants. Together, our work demonstrates an extensive genome-wide interaction between VAL1/2 and PRC2 and provides mechanistic insights into the establishment of Polycomb silencing in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Represión Epigenética , Ontología de Genes , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 2/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Elementos de Respuesta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Plant Physiol ; 184(4): 1969-1978, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037128

RESUMEN

Seed dormancy is an adaptive trait that is crucial to plant survival. Abscisic acid (ABA) is the primary phytohormone that induces seed dormancy. However, little is known about how the level of ABA in seeds is determined. Here we show that the Arabidopsis (Arabidopsis thaliana) H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 (REF6) suppresses seed dormancy by inducing ABA catabolism in seeds. Seeds of the ref6 loss-of-function mutants displayed enhanced dormancy that was associated with increased endogenous ABA content. We further show that the transcripts of two genes key to ABA catabolism, CYP707A1 and CYP707A3, but not genes involved in ABA biosynthesis, were significantly reduced in ref6 mutants during seed development and germination. In developing siliques, REF6 bound directly to CYP707A1 and CYP707A3, and was responsible for reducing their H3K27me3 levels. Genetic analysis demonstrated that the enhanced seed dormancy and ABA concentration in ref6 depended mainly on the reduced expression of CYP707A1 and CYP707A3 Conversely, overexpression of CYP707A1 could offset the enhanced seed dormancy of ref6 Taken together, our results revealed an epigenetic regulation mechanism that is involved in the regulation of ABA content in seeds.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Epigénesis Genética , Germinación/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
4.
Nat Plants ; 6(8): 996-1007, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32747760

RESUMEN

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodelling complexes are multi-protein machineries that control gene expression by regulating chromatin structure in eukaryotes. However, the full subunit composition of SWI/SNF complexes in plants remains unclear. Here we report that in Arabidopsis thaliana, two homologous glioma tumour suppressor candidate region domain-containing proteins, named BRAHMA-interacting proteins 1 (BRIP1) and BRIP2, are core subunits of plant SWI/SNF complexes. brip1 brip2 double mutants exhibit developmental phenotypes and a transcriptome remarkably similar to those of BRAHMA (BRM) mutants. Genetic interaction tests indicated that BRIP1 and BRIP2 act together with BRM to regulate gene expression. Furthermore, BRIP1 and BRIP2 physically interact with BRM-containing SWI/SNF complexes and extensively co-localize with BRM on chromatin. Simultaneous mutation of BRIP1 and BRIP2 results in decreased BRM occupancy at almost all BRM target loci and substantially reduced abundance of the SWI/SNF assemblies. Together, our work identifies new core subunits of BRM-containing SWI/SNF complexes in plants and uncovers the essential role of these subunits in maintaining the abundance of SWI/SNF complexes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Piruvato Quinasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona , Factores Generales de Transcripción
5.
Plant J ; 101(2): 310-323, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536657

RESUMEN

Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed-plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed-specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss-of-function atper1 mutants, atper1-1 and atper1-2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild-type seeds. The suppressed primary seed dormancy of atper1-1 was completely reduced by deletion of CYP707A genes. Furthermore, loss-of-function of AtPER1 cannot enhance the seed germination ratio of aba2-1 or ga1-t, suggesting that AtPER1-enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild-type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinación/fisiología , Giberelinas/metabolismo , Latencia en las Plantas/fisiología , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Mutación , Fenotipo , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/genética , Transcriptoma
6.
New Phytol ; 223(3): 1530-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059122

RESUMEN

How plants can distinguish pathogenic and symbiotic fungi remains largely unknown. Here, we characterized the role of MaLYK1, a lysin motif receptor kinase of banana. Live cell imaging techniques were used in localization studies. RNA interference (RNAi)-silenced transgenic banana plants were generated to analyze the biological role of MaLYK1. The MaLYK1 ectodomain, chitin beads, chitooligosaccharides (COs) and mycorrhizal lipochitooligosaccharides (Myc-LCOs) were used in pulldown assays. Ligand-induced MaLYK1 complex formation was tested in immunoprecipitation experiments. Chimeric receptors were expressed in Lotus japonicus to characterize the function of the MaLYK1 kinase domain. MaLYK1 was localized to the plasma membrane. MaLYK1 expression was induced by Foc4 (Fusarium oxysporum f. sp. cubense race 4) and diverse microbe-associated molecular patterns. MaLYK1-silenced banana lines showed reduced chitin-triggered defense responses, increased Foc4-induced disease symptoms and reduced mycorrhization. The MaLYK1 ectodomain was pulled down by chitin beads and LCOs or COs impaired this process. Ligand treatments induced MaLYK1 complex formation in planta. The kinase domain of MaLYK1 could functionally replace that of the chitin elicitor receptor kinase 1 (AtCERK1) in Arabidopsis thaliana and of a rhizobial LCO (Nod factor) receptor (LjNFR1) in L. japonicus. MaLYK1 represents a central molecular switch that controls defense- and symbiosis-related signaling.


Asunto(s)
Musa/metabolismo , Musa/microbiología , Proteínas de Plantas/metabolismo , Transducción de Señal , Simbiosis , Arabidopsis/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Quitosano , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Lotus/metabolismo , Musa/genética , Micorrizas/fisiología , Oligosacáridos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Proteínas de Plantas/química , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Plant Cell ; 25(1): 134-48, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23362207

RESUMEN

The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of HSL1 was responsible for the interaction. Furthermore, we found that mutations in HDA19 resulted in the ectopic expression of seed maturation genes in seedlings, which was associated with increased levels of gene activation marks, such as Histone H3 acetylation (H3ac), Histone H4 acetylation (H4ac), and Histone H3 Lys 4 tri-methylation (H3K4me3), but decreased levels of the gene repression mark Histone H3 Lys 27 tri-methylation (H3K27me3) in the promoter and/or coding regions. In addition, elevated transcription of certain seed maturation genes was also found in the hsl1 mutant seedlings, which was also accompanied by the enrichment of gene activation marks but decreased levels of the gene repression mark. Chromatin immunoprecipitation assays showed that HDA19 could directly bind to the chromatin of the seed maturation genes. These results suggest that HDA19 and HSL1 may act together to repress seed maturation gene expression during germination. Further genetic analyses revealed that the homozygous hsl1 hda19 double mutants are embryonic lethal, suggesting that HDA19 and HSL1 may play a vital role during embryogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Acetilación , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Mutación , Especificidad de Órganos , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Plantones/citología , Plantones/embriología , Plantones/genética , Plantones/fisiología , Semillas/citología , Semillas/embriología , Semillas/genética , Semillas/fisiología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA