Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(5): e37153, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306566

RESUMEN

As a global malignancy with high mortality rate, targeted drug development for Uterine Cervical Neoplasms is an important direction. The traditional formula Guizhi Fuling Wan (GFW) is widely used in gynecological diseases. However, its potential mechanism of action remains to be discovered. We retrieved GFW and cervical squamous cell carcinoma (CSCC) targets from public databases. The protein-protein interaction network was obtained by string computational analysis and imported Cytoscape_v3.9.0 to obtain the core network and the top 10 Hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis of the core network, and then molecular docking to verify whether the selected signaling pathway binds well to the core node. Finally, clinical prognostic analysis and expression differences of Hub genes were validated using the Cancer Genome Atlas database and R language. Our search yielded 152 common targets for GFW and CSCC. The interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, and Toll-like signaling pathway were then selected for further molecular docking from the hub genes enrichment analysis results, which showed good binding. Among the Hub genes, JUN, VEGFA, IL1B, and EGF had a poor prognosis for CSCC. In conclusion, this study illustrates that GFW can have adjuvant therapeutic effects on CSCC through multiple targets and multiple pathways, providing a basis for further research.


Asunto(s)
Carcinoma de Células Escamosas , Medicamentos Herbarios Chinos , Neoplasias del Cuello Uterino , Humanos , Femenino , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Simulación del Acoplamiento Molecular , Biología Computacional
2.
J Orthop Surg Res ; 18(1): 942, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066577

RESUMEN

BACKGROUND: Aquatic exercise (AE) is becoming ever more popular as a physical therapy, while it is unclear what precise improvements it will produce and how effective it will be in comparison with other non-surgical therapies. The study aimed to assess whether AE positively impacts chronic musculoskeletal disorder patients in terms of pain, physical function, and quality of life. METHODS: PRISMA guidelines were followed, and our study protocol was published online at PROSPERO under registration number CRD42023417411. We searched PubMed, Embase, Web of Science, and Cochrane library databases for English-language articles published before April 11, 2023, including studies from all relevant randomized controlled trials (RCTs). After screening, we ultimately included 32 RCTs with a total of 2,200 participants. We also performed subgroup analyses for all included studies. This meta-analysis calculated standardized mean difference (SMD) with 95% confidence interval (CI), and the variance was estimated using a random-effects model. The quality of the included studies was assessed by using the Cochrane collaborative "risk of bias" assessment tool (version 2.0). Thus ensuring that the literature included is of high quality. RESULTS: This meta-analysis included 32 trials with 2,200 participants; these patients were all between the ages of 38-80. The study showed that compared to the no exercise (NE) group, patients in the AE group experienced a remarkable reduction in pain (SMD: -0.64, P < 0.001), a significant increase in physical function (SMD: 0.62, P < 0.001), and a statistically significant improvement in quality of life (SMD: -0.64, P < 0.001). When compared to land-based exercise (LE), AE significantly relieves patients' pain (SMD: -0.35, P = 0.03). CONCLUSIONS: This is the first systematic review and meta-analysis to study whether AE could improve chronic musculoskeletal disorders. The evidence suggests that AE benefits pain, physical function, and quality of life in adults with chronic musculoskeletal conditions compared to NE. Furthermore, when compared to LE, AE continues to provide a better improvement in patient pain. More long-term clinical trials are needed to confirm AE's positive effects and improvement mechanisms and the more existential advantages compared to LE.


Asunto(s)
Ejercicio Físico , Enfermedades Musculoesqueléticas , Adulto , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Ensayos Clínicos Controlados Aleatorios como Asunto , Enfermedad Crónica , Enfermedades Musculoesqueléticas/terapia , Dolor , Terapia por Ejercicio/métodos
3.
Sci Rep ; 13(1): 13767, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612462

RESUMEN

Neuroinflammation manifests following injury to the central nervous system (CNS) and M1/M2 polarization of microglia is closely associated with the development of this neuroinflammation. In this study, multiple databases were used to collect targets regarding luteolin and microglia polarization. After obtaining a common target, a protein-protein interaction (PPI) network was created and further analysis was performed to obtain the core network. Molecular docking of the core network with luteolin after gene enrichment analysis. In vitro experiments were used to examine the polarization of microglia and the expression of related target proteins. A total of 77 common targets were obtained, and the core network obtained by further analysis contained 38 proteins. GO and KEGG analyses revealed that luteolin affects microglia polarization in regulation of inflammatory response as well as the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways. Through in vitro experiments, we confirmed that the use of luteolin reduced the expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, p-NFκBIA (p-IκB-α), p-NFκB p65, and MMP9, while upregulating the expression of Arg-1 and IL-10. This study reveals various potential mechanisms by which luteolin induces M2 polarization in microglia to inhibit the neuroinflammatory response.


Asunto(s)
Luteolina , Microglía , Humanos , Luteolina/farmacología , Farmacología en Red , Simulación del Acoplamiento Molecular , Enfermedades Neuroinflamatorias
4.
Aging (Albany NY) ; 15(5): 1543-1563, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36881404

RESUMEN

Lung adenocarcinoma (LUAD) is a highly prevalent malignancy worldwide, and its clinical prognosis assessment and treatment is a major research direction. Both ferroptosis and cuproptosis are novel forms of cell death and are considered to be important factors involved in cancer progression. To further understand the correlation between the cuproptosis-related ferroptosis genes (CRFGs) and the prognosis of LUAD, we explore the molecular mechanisms related to the development of the disease. We constructed a prognostic signature containing 13 CRFGs, which, after grouping based on risk score, revealed that the LUAD high-risk group exhibited poor prognosis. Nomogram confirmed that it could be an independent risk factor for LUAD, and ROC curves and DCA validated the validity of the model. Further analysis showed that the three prognostic biomarkers (LIFR, CAV1, TFAP2A) were significantly correlated with immunization. Meanwhile, we found that a LINC00324/miR-200c-3p/TFAP2A regulatory axis could be involved in the progression of LUAD. In conclusion, our report reveals that CRFGs are well correlated with LUAD and provide new ideas for the construction of clinical prognostic tools, immunotherapy, and targeted therapy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Apoptosis , Ferroptosis , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Cobre , Ferroptosis/genética , Pulmón , Neoplasias Pulmonares/genética , Pronóstico , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/genética
5.
Medicine (Baltimore) ; 102(3): e32693, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36701702

RESUMEN

After the World Health Organization declared coronavirus disease 2019 (COVID-19), as a global pandemic, global health workers have been facing an unprecedented and severe challenge. Currently, a mixturetion to inhibit the exacerbation of pulmonary inflammation caused by COVID-19, Fuzheng Yugan Mixture (FZYGM), has been approved for medical institution mixturetion notification. However, the mechanism of FZYGM remains poorly defined. This study aimed to elucidate the molecular and related physiological pathways of FZYGM as a potential therapeutic agent for COVID-19. Active molecules of FZYGM were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), while potential target genes of COVID-19 were identified by DrugBank and GeneCards. Compound-target networks and protein-protein interactions (PPI) were established by Cytoscape_v3.8.2 and String databases, respectively. The gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, a more in-depth study was performed using molecular docking. Our study identified 7 active compounds and 3 corresponding core targets. The main potentially acting signaling pathways include the interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, Toll-like receptor signaling pathway, Th17 cell differentiation, and coronavirus disease-COVID-19. This study shows that FZYGM can exhibit anti-COVID-19 effects through multiple targets and pathways. Therefore, FZYGM can be considered a drug candidate for the treatment of COVID-19, and it provides good theoretical support for subsequent experiments and clinical applications of COVID-19.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
6.
Medicine (Baltimore) ; 101(28): e29593, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35839049

RESUMEN

Since 1990, the incidence of stroke has been rising to become the second leading cause of death in the world, posing a huge burden and challenge to society and families. Astragalus membranaceus and Ligusticum chuanxiong (A&L) have been used as traditional Chinese medicine (TCM) prescriptions to treat and prevent the occurrence of ischemic stroke (IS), but their mechanism of action on the disease has not been fully elucidated. The main objective of this study was to reveal the pharmacological mechanism of A&L in the treatment of IS and to perform preliminary validation. The active ingredients of A&L were obtained from the systematic pharmacology platform of traditional Chinese medicine (TCMSP) database, whereas the genes of IS were obtained from 2 major databases, DrugBank and GeneCards. Cytoscape_v3.8.2 was used to construct the TCM-active ingredient and TCM-active ingredient-cross-target-disease relationship maps, and the MCODE plug-in was used to obtain the core genes, whereas the protein-protein interaction maps were obtained from the STRING database. The results of gene ontology and Kyoto encyclopedia of genes and genomes enrichment were obtained using the Hiplot online tool, and the small molecules in the relevant signalling pathways were verified by molecular docking using AutoDock. A&L contained a total of 26 eligible active ingredients, sharing 161 common targets with IS. A total of 58 core genes with 1326 edges were obtained using the MCODE plug-in. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment results showed association with interleukin-17 signaling pathway, lipid and atherosclerosis, tumor necrosis factor signaling pathway, and Toll-like receptor signaling pathway, which mainly mediates the development of inflammatory responses. Furthermore, molecular docking was conducted and most of the components were found to have good binding to the receptors. This study demonstrates that A&L can be used to treat IS by controlling the inflammatory response through multiple targets and multiple pathways, and provides a reference for subsequent trials.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Ligusticum , Astragalus propinquus , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Farmacología en Red
7.
Bioengineered ; 13(5): 13767-13783, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35726821

RESUMEN

Among cardiovascular diseases, myocardial fibrosis (MF) is a major pathological change underlying heart failure and is associated with a high mortality rate. However, the molecular mechanism underlying MF has remained elusive. Buyang Huanwu decoction (BYHWD), a traditional Chinese medicine (TCM) formula for cardiovascular diseases, exhibits good anti-inflammatory and blood-activating properties. In the present study, we studied the MF inhibitory effect of BYHWD using network pharmacology and experimental validation. We used several databases to collect information on MF and related drugs and finally obtained cross-targets for BYHWD and MF. After that we got protein-protein interaction (PPI) network and performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses to obtain key signaling pathways for further study. After screening, interleukin (IL)-6, IL-1ß, and matrix metallopeptidase 9 (MMP9) were selected for in vitro experiments, which included cell cycle studies, cell migration rate, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and western blotting (WB). Finally, molecular docking was performed to validate the results. We found 299 common targets between BYHWD and MF. In total, 75 core targets of the PPI core network were selected for enrichment analysis, and the IL-17 signaling pathway, which is intricately linked to inflammation, was speculated to be involved. Accordingly, in vitro experiments were performed. Altogether, our findings indicated that BYHWD can affect the function of cardiac fibroblasts and reduce the expression of inflammatory factors in rats. In summary, BYHWD can inhibit MF by reducing the expression of inflammatory factors and affecting the IL-17 signaling pathway.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Fibrosis , Humanos , Interleucina-17 , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...