Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(27): 12520-12535, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759747

RESUMEN

The molecular wheel [Cr10(OMe)20(O2CCMe3)10], abbreviated {Cr10}, with an unusual intermediate total spin S = 9 and non-negligible cluster anisotropy, D/kB = -0.045(2) K, is a rare case among wheels based on an even number of 3d-metals, which usually present an antiferromagnetic (AF) ground state (S = 0). Herein, we unveil the origin of such a behavior. Angular magnetometry measurements performed on a single crystal confirmed the axial anisotropic behavior of {Cr10}. For powder samples, the temperature dependence of the susceptibility plotted as χT(T) showed an overall ferromagnetic (FM) behavior down to 1.8 K, whereas the magnetization curve M(H) did not saturate at the expected 30 µB/fu for 10 FM coupled 3/2 spin Cr3+ ions, but to a much lower value, corresponding to S = 9. In addition, the X-ray magnetic circular dichroism (XMCD) measured at high magnetic field (170 kOe) and 7.5 K showed the polarization of the cluster moment up to 23 µB/fu. The magnetic results can be rationalized within a model, including the cluster anisotropy, in which the {Cr10} wheel is formed by two semiwheels, each with four Cr3+ spins FM coupled (JFM/kB = 2.0 K), separated by two Cr3+ ions AF coupled asymmetrically (J23/kB = J78/kB = -2.0 K; J34/kB = J89/kB = -0.25 K). Inelastic neutron scattering and heat capacity allowed us to confirm this model leading to the S = 9 ground state and first excited S = 8. Single-molecule magnet behavior with an activation energy of U/kB = 4.0(5) K in the absence of applied field was observed through ac susceptibility measurements down to 0.1 K. The intriguing magnetic behavior of {Cr10} arises from the detailed asymmetry in the molecule interactions produced by small-angle distortions in the angles of the Cr-O-Cr alkoxy bridges coupling the Cr3+ ions, as demonstrated by ab initio and density functional theory calculations, while the cluster anisotropy can be correlated to the single-ion anisotropies calculated for each Cr3+ ion in the wheel.

2.
Dalton Trans ; 49(9): 2979-2988, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32077873

RESUMEN

The "butterfly" molecule [Fe3Y(µ3-O)2(CCl3COO)8(H2O)(THF)3] (in brief {Fe3YO2}) includes three Fe3+ ions which build a robust Fe3 cluster with a strong intracluster antiferromagnetic exchange and a total spin S = 5/2. It represents the starting magnetic system to study further interactions with magnetic rare earths when Y is replaced with lanthanides. We present heat capacity and equilibrium susceptibility measurements below 2 K, which show that each cluster has a sizeable magnetic anisotropy pointing to the existence of intercluster interactions. However, no phase transition to a long-range magnetically ordered phase is observed down to 20 mK. The intercluster interaction is analysed in the framework of the one-dimensional Blume-Capel model with an antiferromagnetic chain interaction constant J/kB = -40(2) mK between Fe3 cluster spins, and a uniaxial anisotropy with parameter D/kB = -0.56(3) K. This is associated to single chains of Fe3 clusters oriented along the shortest intercluster distances displayed by the crystal structure of {Fe3YO2}. Ac susceptibility measurements reveal that the magnetic relaxation is dominated by a quantum tunnelling process below 0.2 K, and by thermally activated processes above this temperature. The experimental activation energy of this single chain magnet, Ea/kB = 3.4(6) K, can be accounted for by the combination of contributions arising from single-molecule magnetic anisotropy and spin-spin correlations along the chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...