Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3093-3105, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206310

RESUMEN

As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.


Asunto(s)
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Potenciales de la Membrana , Poliésteres/química , Polímeros/química , Fibroblastos
2.
Nanoscale Horiz ; 8(1): 95-107, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36426604

RESUMEN

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.


Asunto(s)
Glioblastoma , Humanos , Electricidad Estática , Ingeniería de Tejidos/métodos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Diferenciación Celular , Microambiente Tumoral
3.
Cell Rep ; 38(6): 110347, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139381

RESUMEN

The induction of synaptic plasticity at an individual dendritic glutamatergic spine can affect neighboring spines. This local modulation generates dendritic plasticity microdomains believed to expand the neuronal computational capacity. Here, we investigate whether local modulation of plasticity can also occur between glutamatergic synapses and adjacent GABAergic synapses. We find that the induction of long-term potentiation at an individual glutamatergic spine causes the depression of nearby GABAergic inhibitory synapses (within 3 µm), whereas more distant ones are potentiated. Notably, L-type calcium channels and calpain are required for this plasticity spreading. Overall, our data support a model whereby input-specific glutamatergic postsynaptic potentiation induces a spatially regulated rearrangement of inhibitory synaptic strength in the surrounding area through short-range heterosynaptic interactions. Such local coordination of excitatory and inhibitory synaptic plasticity is expected to influence dendritic information processing and integration.


Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Dendritas/fisiología , Ratones , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...