Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mar Pollut Bull ; 206: 116797, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096866

RESUMEN

Microplastic (MP) particles can be found all around the planet, even in Antarctica where they can be locally originated or transported by marine currents and winds. In this communication, we identify and report for the first time the contribution of a wastewater treatment plant (WWTP) as a local source of MP particles in the region. The analysis of the entire sample using micro-Raman spectroscopy revealed an MP concentration that ranged from 64 to 159 particles per liter of wastewater. >90 % of the identified particles were smaller than 50 µm. Among those analyzed, microplastics were identified as polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyethylene terephthalate, and polystyrene. These findings demonstrate the need for urgent policies and technologies to mitigate this MP contamination source.

2.
Glycobiology ; 34(1)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37944064

RESUMEN

During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.


Asunto(s)
COVID-19 , Saccharomycetales , Vacunas , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , Prueba de COVID-19 , Pichia/genética , Pichia/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Recombinantes/química , Vacunas/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales
3.
Nat Prod Bioprospect ; 12(1): 26, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35831516

RESUMEN

The Antarctic fungus Cadophora malorum produces previously undescribed cyclic heptapeptides (cadophorin A and B) containing an anthranilic acid residue. The planar structure of these peptides was determined by high-resolution mass spectrometry combined with extensive 1D and 2D NMR spectroscopy. The absolute configuration of the amino acids was determined by Marfey's method, with HPLC analysis of FDVA (Nα-(2,4-dinitro-5-fluorphenyl)-L-valinamide) derivatives making use of a PFP column. Remarkably, cadophorin 2 possesses both the uncommon D-Ile and D-allo-Ile in its structure. The peptides have metal binding properties as shown by LCMS with post column addition of metal salt solutions. These results were supported by DFT calculations.

4.
Appl Microbiol Biotechnol ; 106(7): 2283-2297, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35294589

RESUMEN

Microbial associations arise as useful tools in several biotechnological processes. Among them, bioremediation of contaminated environments usually takes advantage of these microbial associations. Despite being frequently used, these associations are indicated using a variety of expressions, showing a lack of consensus by specialists in the field. The main idea of this work is to analyze the variety of microbial associations referred to as "microbial consortia" (MC) in the context of pollutants biodegradation and bioremediation. To do that, we summarize the origin of the term pointing out the features that an MC is expected to meet, according to the opinion of several authors. An analysis of related bibliography was done seeking criteria to rationalize and classify MC in the context of bioremediation. We identify that the microbe's origin and the level of human intervention are usually considered as a category to classify them as natural microbial consortia (NMC), artificial microbial consortia (AMC), and synthetic microbial consortia (SMC). In this sense, NMC are those associations composed by microorganisms obtained from a single source while AMC members come from different sources. SMC are a class of AMC in which microbial composition is defined to accomplish a certain specific task. We propose that the effective or potential existence of the interaction among MC members in the source material should be considered as a category in the classification as well, in combination with the origin of the source and level of intervention. Cross-kingdom MC and new developments were also considered. Finally, the existence of grey zones in the limits between each proposed microbial consortia category is addressed. KEY POINTS: • Microbial consortia for bioremediation can be obtained through different methods. • The use of the term "microbial consortia" is unclear in the specialized literature. • We propose a simplified classification for microbial consortia for bioremediation.


Asunto(s)
Contaminantes Ambientales , Consorcios Microbianos , Biodegradación Ambiental , Biotecnología , Humanos
5.
Microbiologyopen ; 10(5): e1219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713606

RESUMEN

The objective of this study is to identify and analyze integrons and antibiotic resistance genes (ARGs) in samples collected from diverse sites in terrestrial Antarctica. Integrons were studied using two independent methods. One involved the construction and analysis of intI gene amplicon libraries. In addition, we sequenced 17 metagenomes of microbial mats and soil by high-throughput sequencing and analyzed these data using the IntegronFinder program. As expected, the metagenomic analysis allowed for the identification of novel predicted intI integrases and gene cassettes (GCs), which mostly encode unknown functions. However, some intI genes are similar to sequences previously identified by amplicon library analysis in soil samples collected from non-Antarctic sites. ARGs were analyzed in the metagenomes using ABRIcate with CARD database and verified if these genes could be classified as GCs by IntegronFinder. We identified 53 ARGs in 15 metagenomes, but only four were classified as GCs, one in MTG12 metagenome (Continental Antarctica), encoding an aminoglycoside-modifying enzyme (AAC(6´)acetyltransferase) and the other three in CS1 metagenome (Maritime Antarctica). One of these genes encodes a class D ß-lactamase (blaOXA-205) and the other two are located in the same contig. One is part of a gene encoding the first 76 amino acids of aminoglycoside adenyltransferase (aadA6), and the other is a qacG2 gene.


Asunto(s)
Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Integrasas/genética , Integrones/genética , Metagenoma , Regiones Antárticas , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Filogenia , Microbiología del Suelo
6.
Extremophiles ; 21(3): 445-457, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28271165

RESUMEN

In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.


Asunto(s)
Metales Pesados/metabolismo , Fenoles/metabolismo , Levaduras/metabolismo , Adaptación Fisiológica , Regiones Antárticas , Biodegradación Ambiental , Frío Extremo , Metales Pesados/toxicidad , Microbiología del Suelo , Levaduras/efectos de los fármacos , Levaduras/aislamiento & purificación
7.
J Basic Microbiol ; 57(6): 504-516, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28272809

RESUMEN

The aim of this study was to investigate the ability to produce extracellular hydrolytic enzymes at low temperature of yeasts isolated from 25 de Mayo island, Antarctica, and to identify those exhibiting one or more of the evaluated enzymatic activities. A total of 105 yeast isolates were obtained from different samples and 66 were identified. They belonged to 12 basidiomycetous and four ascomycetous genera. Most of the isolates were ascribed to the genera Cryptococcus, Mrakia, Cystobasidium, Rhodotorula, Gueomyces, Phenoliferia, Leucosporidium, and Pichia. Results from enzymes production at low temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which represent potential tools for biotechnological applications. While most the isolates proved to produce 2-4 of the investigated exoenzymes, two of them evidenced the six evaluated enzymatic activities: Pichia caribbica and Guehomyces pullulans, which were characterized as psycrotolerant and psycrophilic, respectively. In addition, P. caribbica could assimilate several n-alkanes and diesel fuel. The enzyme production profile and hydrocarbons assimilation capacity, combined with its high level of biomass production and the extended exponential growth phase make P. caribbica a promising tool for cold environments biotechnological purposes in the field of cold-enzymes production and oil spills bioremediation as well.


Asunto(s)
Adaptación Fisiológica , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Bioprospección , Biotecnología , Frío , Microbiología del Suelo , Regiones Antárticas , Ascomicetos/enzimología , Ascomicetos/aislamiento & purificación , Basidiomycota/enzimología , Basidiomycota/aislamiento & purificación , Biodegradación Ambiental , Biomasa , ADN de Hongos , Proteínas Fúngicas/genética , Gasolina , Hidrocarburos/metabolismo , Filogenia , Pichia/enzimología , Pichia/crecimiento & desarrollo , Pichia/aislamiento & purificación
8.
Rev Argent Microbiol ; 46(3): 218-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25444131

RESUMEN

Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia-Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks.


Asunto(s)
Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , ADN Bacteriano/genética , ADN Ribosómico/genética , Evolución Molecular , Microbiota , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Ribotipificación
9.
Rev. argent. microbiol ; 46(3): 218-230, Oct. 2014. ilus, tab
Artículo en Inglés | BINACIS | ID: bin-131268

RESUMEN

.(AU)


Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia- Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks.(AU)

10.
Rev. argent. microbiol ; 46(3): 218-230, oct. 2014. ilus, tab
Artículo en Inglés | LILACS | ID: lil-734583

RESUMEN

.


Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia- Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks.


Asunto(s)
Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Regiones Antárticas , Secuencia de Bases , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Evolución Molecular , Microbiota , Datos de Secuencia Molecular , Filogenia , Ribotipificación , ARN Bacteriano/genética , /genética
11.
Rev. Argent. Microbiol. ; 46(3): 218-30, 2014 Jul-Sep.
Artículo en Español | BINACIS | ID: bin-133298

RESUMEN

Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia-Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks.


Asunto(s)
Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , ADN Bacteriano/genética , ADN Ribosómico/genética , Evolución Molecular , Microbiota , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Ribotipificación
12.
Yeast ; 30(11): 459-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24298603

RESUMEN

Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by 'cold-loving' fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.


Asunto(s)
Colorantes/metabolismo , Lignina/metabolismo , Polifenoles/metabolismo , Levaduras/aislamiento & purificación , Levaduras/metabolismo , Regiones Antárticas , Biodegradación Ambiental , Microbiología Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacasa/genética , Lacasa/metabolismo , Datos de Secuencia Molecular , Filogenia , Levaduras/clasificación , Levaduras/enzimología
13.
J Bacteriol ; 193(23): 6797-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22072650

RESUMEN

A psychrotolerant marine bacterial strain, designated JUB59(T), was isolated from Antarctic surface seawater and classified as a new species of the genus Bizionia. Here, we present the first draft genome sequence for this genus, which suggests interesting features such as UV resistance, hydrolytic exoenzymes, and nitrogen metabolism.


Asunto(s)
Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Genoma Bacteriano , Agua de Mar/microbiología , Regiones Antárticas , Secuencia de Bases , Flavobacteriaceae/clasificación , Datos de Secuencia Molecular , Filogenia
14.
Bol. micol ; 24: 21-25, dic. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-585739

RESUMEN

Marine fungi ascribed to the ascomycetes and the hyphomycetes are infrequently reported for the Southern Ocean. For this reason, the main objective of the present work was to detect the presence of these fungi seawater of Potter Cove, King George (25 de Mayo) Island, South Shetland Island, Antarctica. For this purpose marine fungi were grown on wood test panels, placed into plastic nets in the tidal zone, exposed to the Antarctic seawater for different periods of time, which ranged between 2 and 12 months.As a result of this survey, we were able to recover and identify two marine fungi, Papulospora halima (which represents the first report for this environment) and a new morphological variety of Halosphaeria tubulifera.


Los ascomicetes e hifomicetes marinos están escasamente documentados para el océano Atlántico Sur. Por este motivo, el principal objetivo del presente trabajo fue detectar la presencia de dichos hongos en las agua marinas de la Potter Cove, en la isla Rey Jorge/25 de Mayo (islas Shetland del Sur, Antártida). Para este propósito, los hongos marinos se desarrollaron en paneles de madera dentro de una red plástica en la zona tidal, expuestos al agua de mar antártica por diferentes períodos de tiempo que oscilaron entre 2 a 12 meses. Como resultado de este estudio, fuimos capaces de recuperar e identificar 2 hongos marinos, Papulospora halima (que representa el primer reporte para este ambiente) y una nueva variedad morfológica de Halosphaeria tubulifera.


Asunto(s)
Hongos Acuáticos , Ascomicetos/aislamiento & purificación , Ascomicetos/clasificación , Ascomicetos/crecimiento & desarrollo , Hongos Mitospóricos/aislamiento & purificación , Hongos Mitospóricos/crecimiento & desarrollo
15.
Int J Syst Evol Microbiol ; 58(Pt 10): 2363-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18842857

RESUMEN

A marine bacterial strain, designated strain JUB59(T), was isolated from surface seawater in Antarctica and subsequently characterized. Cells were found to be Gram-negative, non-motile rods forming butyrous, shiny, yellowish orange colonies on marine agar. Growth occurred at 2-28 degrees C (optimally at 22-25 degrees C) but not at 30 degrees C; Na+ ions were required, but 9 % NaCl (w/v) was not tolerated. Phylogenetic analysis, based on comparisons of the complete 16S rRNA gene sequence of the novel isolate with the sequences of closely related strains, showed that strain JUB59(T) belonged to the family Flavobacteriaceae, representing a novel species of the genus Bizionia. The highest levels of sequence similarity were found with respect to Bizionia myxarmorum ADA-4(T) (97.4 %) and Bizionia algoritergicola APA-1(T) (97.1 %). However, the DNA-DNA relatedness of strain JUB59(T) with respect to these two strains was low (15.9-17.3 and 19.3-22.1 %, respectively). The predominant fatty acids of strain JUB59(T) were iso-15 : 1omega10c (18.1 %), iso-15 : 0 (17.3 %), anteiso-15 : 0 (13.9 %), iso-17 : 0 3-OH (9.2 %), 15 : 0 (6.0 %) and iso-16 : 0 3-OH (5.3 %). The main polar lipids were phosphatidylethanolamine, an aminolipid, an amino-positive phospholipid and two unidentified lipids. MK-6 was the major respiratory quinone (>90 %) and the DNA G+C content was 34 mol%. On the basis of the data obtained, strain JUB59(T) represents a novel species of the genus Bizionia, for which the name Bizionia argentinensis sp. nov. is proposed. The type strain is JUB59(T) (=DSM 19628(T)=CCM-A-29 1259(T)).


Asunto(s)
Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Agua de Mar/microbiología , Regiones Antárticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/química , Flavobacteriaceae/aislamiento & purificación , Genes Bacterianos , Genes de ARNr , Datos de Secuencia Molecular , Fosfolípidos/química , Filogenia , Quinonas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA