Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2108760119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377797

RESUMEN

Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5. We show that scRNA-seq clustering using transcription factors improves resolution of regional and developmental populations, and that enhancer activities identify specific and overlapping GE-derived neuronal populations. First, we mapped the activities of seven evolutionarily conserved brain enhancers at single-cell resolution in vivo, finding that the selected enhancers had diverse activities in specific progenitor and neuronal populations across the GEs. We then applied enhancer-based labeling, scRNA-seq, and analysis of in situ hybridization data to distinguish transcriptionally distinct and spatially defined subtypes of MGE-derived GABAergic and cholinergic projection neurons and interneurons. Our results map developmental origins and specification paths underlying neurogenesis in the embryonic basal ganglia and showcase the power of scRNA-seq combined with enhancer-based labeling to resolve the complex paths of neuronal specification underlying mouse brain development.


Asunto(s)
Ganglios Basales , Neuronas Colinérgicas , Elementos de Facilitación Genéticos , Neuronas GABAérgicas , Neurogénesis , Animales , Ganglios Basales/citología , Ganglios Basales/embriología , Linaje de la Célula/genética , Neuronas Colinérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Neurogénesis/genética , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33199411

RESUMEN

Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.


Asunto(s)
Trastorno Autístico , Interneuronas , Elementos Reguladores de la Transcripción , Esquizofrenia , Animales , Animales Modificados Genéticamente , Dependovirus , Vectores Genéticos , Ratones , Factores de Transcripción
3.
Nat Commun ; 10(1): 4994, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676823

RESUMEN

Medial ganglionic eminence (MGE)-derived somatostatin (SST)+ and parvalbumin (PV)+ cortical interneurons (CINs), have characteristic molecular, anatomical and physiological properties. However, mechanisms regulating their diversity remain poorly understood. Here, we show that conditional loss of the Tuberous Sclerosis Complex (TSC) gene, Tsc1, which inhibits the mammalian target of rapamycin (MTOR), causes a subset of SST+ CINs, to express PV and adopt fast-spiking (FS) properties, characteristic of PV+ CINs. Milder intermediate phenotypes also occur when only one allele of Tsc1 is deleted. Notably, treatment of adult mice with rapamycin, which inhibits MTOR, reverses the phenotypes. These data reveal novel functions of MTOR signaling in regulating PV expression and FS properties, which may contribute to TSC neuropsychiatric symptoms. Moreover, they suggest that CINs can exhibit properties intermediate between those classically associated with PV+ or SST+ CINs, which may be dynamically regulated by the MTOR signaling.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Potenciales de Acción/fisiología , Animales , Corteza Cerebral/citología , Femenino , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Parvalbúminas/genética , Técnicas de Placa-Clamp , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Somatostatina/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
4.
Cereb Cortex ; 28(11): 3797-3815, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028947

RESUMEN

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Neuronas GABAérgicas/fisiología , Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Sinapsis/fisiología , Factores de Transcripción/fisiología , Ácido gamma-Aminobutírico/biosíntesis , Animales , Corteza Cerebral/citología , Femenino , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Glutamato Descarboxilasa/metabolismo , Proteínas de Homeodominio/genética , Interneuronas/citología , Masculino , Ratones Noqueados , Potenciales Postsinápticos Miniatura , Factores de Transcripción/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-23015780

RESUMEN

CORTICAL GABAERGIC INTERNEURONS IN RODENTS ORIGINATE IN THREE SUBCORTICAL REGIONS: the medial ganglionic eminence (MGE), the lateral/caudal ganglionic eminence (LGE/CGE), and the preoptic area (POA). Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. Neuronal NOS (nNOS)-expressing neurons represent a heterogenous population of cortical interneurons. We examined the development of these cells in the mouse embryonic cortex and their abundance and distribution in adult animals. Using genetic lineage tracing in transgenic mice we find that nNOS type I cells originate only in the MGE whereas type II cells have a triple origin in the MGE, LGE/CGE, and POA. The two populations are born at different times during development, occupy different layers in the adult cortex and have distinct neurochemical profiles. nNOS neurons are more numerous in the adult cortex than previously reported and constitute a significant proportion of the cortical interneuron population. Our data suggest that the heterogeneity of nNOS neurons in the cortex can be attributed to their multiple embryonic origins which likely impose distinct genetic specification programs.

6.
J Neurosci ; 30(36): 12050-62, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826668

RESUMEN

Cortical interneurons originate from subpallial precursors and migrate into the cortex during development. Using genetic lineage tracing in transgenic mice we examine the contribution of two germinal zones, the septum and the lateral ganglionic eminence/caudal ganglionic eminence (LGE/CGE) to interneurons of the cortex. We find that the septal neuroepithelium does not generate interneurons for the neocortex. There is, however, clear migration of cells from the LGE/CGE to the cortex. Comparison of the dynamics of cortical colonization by the two major cohorts of interneurons originating in the medial ganglionic eminence (MGE) and the LGE/CGE has shown differences in the timing of migration and initial route of entry into the cortex. LGE/CGE-derived interneurons enter the cortex later than the MGE-derived ones. They invade the cortex through the subventricular/intermediate zone route and only later disperse within the cortical plate and the marginal zone. During the first postnatal week MGE interneurons move extensively to acquire their laminar position within the cortical plate whereas LGE/CGE-derived cells remain largely within the upper layers of the cortex. The two populations intermingle in the adult cortex but have distinct neurochemical properties and different overall distributions. LGE/CGE-derived interneurons account for one third of the total GABAergic interneuron population in the adult cortex.


Asunto(s)
Ganglios Basales/citología , Movimiento Celular/fisiología , Corteza Cerebral , Interneuronas/fisiología , Tabique del Cerebro/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , ARN no Traducido , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...