Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 290(23): 14454-61, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25944897

RESUMEN

In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Vasopresinas/metabolismo , Células 3T3-L1 , Animales , Transporte Biológico , Cistinil Aminopeptidasa/metabolismo , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL
2.
J Biol Chem ; 287(28): 23932-47, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22610098

RESUMEN

To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.


Asunto(s)
Adipocitos/metabolismo , Proteínas Portadoras/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 4/genética , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Interferencia de ARN , Homología de Secuencia de Aminoácido
3.
J Cell Biol ; 193(4): 643-53, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21555461

RESUMEN

Insulin stimulates translocation of GLUT4 storage vesicles (GSVs) to the surface of adipocytes, but precisely where insulin acts is controversial. Here we quantify the size, dynamics, and frequency of single vesicle exocytosis in 3T3-L1 adipocytes. We use a new GSV reporter, VAMP2-pHluorin, and bypass insulin signaling by disrupting the GLUT4-retention protein TUG. Remarkably, in unstimulated TUG-depleted cells, the exocytic rate is similar to that in insulin-stimulated control cells. In TUG-depleted cells, insulin triggers a transient, twofold burst of exocytosis. Surprisingly, insulin promotes fusion pore expansion, blocked by acute perturbation of phospholipase D, which reflects both properties intrinsic to the mobilized vesicles and a novel regulatory site at the fusion pore itself. Prolonged stimulation causes cargo to switch from approximately 60 nm GSVs to larger exocytic vesicles characteristic of endosomes. Our results support a model whereby insulin promotes exocytic flux primarily by releasing an intracellular brake, but also by accelerating plasma membrane fusion and switching vesicle traffic between two distinct circuits.


Asunto(s)
Adipocitos/metabolismo , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Vesículas Transportadoras/metabolismo , Células 3T3-L1 , Animales , Técnicas Biosensibles , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transportador de Glucosa de Tipo 4/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Cinética , Fusión de Membrana , Ratones , Microscopía Fluorescente , Microscopía por Video , Fosfolipasa D/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
4.
Vitam Horm ; 80: 155-92, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19251038

RESUMEN

GLUT4 glucose transporters are expressed nearly exclusively in adipose and muscle cells, where they cycle to and from the plasma membrane. In cells not stimulated with insulin, GLUT4 is targeted to specialized GLUT4 storage vesicles (GSVs), which sequester it away from the cell surface. Insulin acts within minutes to mobilize these vesicles, translocating GLUT4 to the plasma membrane to enhance glucose uptake. The mechanisms controlling GSV sequestration and mobilization are poorly understood. An insulin-regulated aminopeptidase that cotraffics with GLUT4, IRAP, is required for basal GSV retention and insulin-stimulated mobilization. TUG and Ubc9 bind GLUT4, and likely retain GSVs within unstimulated cells. These proteins may be components of a retention receptor, which sequesters GLUT4 and IRAP away from recycling vesicles. Insulin may then act on this protein complex to liberate GLUT4 and IRAP, discharging GSVs into a recycling pathway for fusion at the cell surface. How GSVs are anchored intracellularly, and how insulin mobilizes these vesicles, are the important topics for ongoing research. Regulation of GLUT4 trafficking is tissue-specific, perhaps in part because the formation of GSVs requires cell type-specific expression of sortilin. Proteins controlling GSV retention and mobilization can then be more widely expressed. Indeed, GLUT4 likely participates in a general mechanism by which the cell surface delivery of various membrane proteins can be controlled by extracellular stimuli. Finally, it is not known if defects in the formation or intracellular retention of GSVs contribute to human insulin resistance, or play a role in the pathogenesis of type 2 diabetes.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transporte Biológico/fisiología , Proteínas Co-Represoras , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Insulina/farmacología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...