Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.032
Filtrar
1.
Front Immunol ; 15: 1372957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779688

RESUMEN

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Asunto(s)
Hipertensión Pulmonar , Macrófagos , Animales , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/patología , Ratones , Macrófagos/inmunología , Macrófagos/parasitología , Fenotipo , Schistosoma mansoni/inmunología , Ratones Endogámicos C57BL , Esquistosomiasis/inmunología , Esquistosomiasis/complicaciones , Esquistosomiasis/parasitología , Modelos Animales de Enfermedad , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monocitos/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Femenino , Schistosoma/inmunología , Schistosoma/fisiología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38568479

RESUMEN

RATIONALE: Idiopathic Pulmonary Arterial Hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling due to plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. OBJECTIVE: Test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. METHODS: We used digital spatial transcriptomics to profile the genome-wide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n= 11) and compared these data to the intima+media and adventitia of control pulmonary artery (n=5). RESULTS: We detected 8273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima-media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for (i) genes associated with TGFß-signaling and (ii) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and interferon signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. CONCLUSIONS: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.

3.
FASEB J ; 37(12): e23316, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983890

RESUMEN

Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos Alveolares , Ratones , Humanos , Animales , Macrófagos Alveolares/metabolismo , Células Epiteliales Alveolares/metabolismo , Ácido Láctico/metabolismo , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579172

RESUMEN

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Asunto(s)
COVID-19 , Humanos , Ligandos , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Portadoras/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
6.
Am J Respir Cell Mol Biol ; 69(5): 570-583, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37343939

RESUMEN

Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.


Asunto(s)
Hipertensión Pulmonar , Sirtuina 3 , Humanos , Animales , Bovinos , Hipertensión Pulmonar/patología , Sirtuina 3/genética , Sirtuina 3/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fibroblastos/metabolismo
7.
Clin Sci (Lond) ; 137(8): 617-631, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37014925

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Esquistosomiasis , Humanos , Animales , Ratones , Hipertensión Pulmonar/etiología , Fibrosis Pulmonar/complicaciones , Schistosoma mansoni , Pulmón/patología , Esquistosomiasis/complicaciones , Esquistosomiasis/patología , Fibrosis
8.
Am J Respir Cell Mol Biol ; 69(1): 73-86, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36944195

RESUMEN

Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.


Asunto(s)
Hipertensión Pulmonar , Animales , Humanos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Fenotipo , Citocinas/metabolismo , Arteria Pulmonar/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Hipoxia/complicaciones , Fibroblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Cultivadas
9.
bioRxiv ; 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36712057

RESUMEN

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

10.
Compr Physiol ; 13(1): 4295-4319, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715285

RESUMEN

In the over 100 years since the recognition of pulmonary hypertension (PH), immense progress and significant achievements have been made with regard to understanding the pathophysiology of the disease and its treatment. These advances have been mostly in idiopathic pulmonary arterial hypertension (IPAH), which was classified as Group 1 Pulmonary Hypertension (PH) at the Second World Symposia on PH in 1998. However, the pathobiology of PH due to chronic lung disease, classified as Group 3 PH, remains poorly understood and its treatments thus remain limited. We review the history of the classification of the five groups of PH and aim to provide a state-of-the-art review of the understanding of the pathogenesis of Group 1 PH and Group 3 PH including insights gained from novel high-throughput omics technologies that have revealed heterogeneities within these categories as well as similarities between them. Leveraging the substantial gains made in understanding the genomics, epigenomics, proteomics, and metabolomics of PAH to understand the full spectrum of the complex, heterogeneous disease of PH is needed. Multimodal omics data as well as supervised and unbiased machine learning approaches after careful consideration of the powerful advantages as well as of the limitations and pitfalls of these technologies could lead to earlier diagnosis, more precise risk stratification, better predictions of disease response, new sub-phenotype groupings within types of PH, and identification of shared pathways between PAH and other types of PH that could lead to new treatment targets. © 2023 American Physiological Society. Compr Physiol 13:4295-4319, 2023.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Pulmonares , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/terapia , Genómica
11.
Histopathology ; 82(4): 508-520, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36221864

RESUMEN

Squamous cell carcinoma (SCC) is the most common malignant tumour of the penis. The 2022 WHO classification reinforces the 2016 classification and subclassifies precursor lesions and tumours into human papillomavirus (HPV)-associated and HPV-independent types. HPV-associated penile intraepithelial neoplasia (PeIN) is a precursor lesion of invasive HPV- associated SCC, whereas differentiated PeIN is a precursor lesion of HPV-independent SCC. Block-type positivity of p16 immunohistochemistry is the most practical daily utilised method to separate HPVassociated from HPVindependent penile SCC. If this is not feasible, the term SCC, not otherwise specified (NOS) is appropriate. Certain histologies that were previously classified as "subtypes" are now grouped, and coalesced as "patterns", under the rubric of usual type SCC and verrucous carcinoma (e.g. usual-type SCC includes pseudohyperplastic and acantholytic/pseudoglandular carcinoma, and carcinoma cuniculatum is included as a pattern of verrucous carcinoma). If there is an additional component of the usual type of invasive SCC (formerly termed hybrid histology), the tumour would be a mixed carcinoma (e.g. carcinoma cuniculatum or verrucous carcinoma with usual invasive SCC); in such cases, reporting of the relative percentages in mixed tumours may be useful. The consistent use of uniform nomenclature and reporting of percentages will inform the refinement of future reporting classification schemes and guidelines/recommendations. The classification of scrotal tumours is provided for the first time in the fifth edition of the WHO Blue book, and it follows the schema of penile cancer classification for both precursor lesions and the common SCC of the scrotum. Basal cell carcinoma of the scrotum may have a variable clinical course and finds a separate mention.


Asunto(s)
Carcinoma de Células Escamosas , Carcinoma Verrugoso , Neoplasias de los Genitales Masculinos , Infecciones por Papillomavirus , Neoplasias del Pene , Neoplasias Cutáneas , Masculino , Humanos , Infecciones por Papillomavirus/patología , Escroto/metabolismo , Escroto/patología , Carcinoma de Células Escamosas/patología , Neoplasias del Pene/patología , Virus del Papiloma Humano , Organización Mundial de la Salud , Papillomaviridae
12.
Ann Surg ; 277(2): 206-213, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34171877

RESUMEN

OBJECTIVE: The study aims to determine the influence of trainee gender on assessments of coronary anastomosis performance. SUMMARY OF BACKGROUND DATA: Understanding the impact of gender bias on the evaluation of trainees may enable us to identify and utilize assessment tools that are less susceptible to potential bias. METHODS: Cardiothoracic surgeons were randomized to review the video performance of trainees who were described by either male or female pronouns. All participants viewed the same video of a coronary anastomosis and were asked to grade technique using either a Checklist or Global Rating Scale (GRS). Effect of trainee gender on scores by respondent demographic was evaluated using regression analyses. Inter-rater reliability was assessed using the Cronbach's alpha. RESULTS: 103 cardiothoracic surgeons completed the Checklist (trainee gender: male n=50, female n=53) and 112 completed the GRS (trainee gender: male n=56, female n=56). For the Checklist, male cardiothoracic surgeons who were in practice <10 years ( P = 0.036) and involved in training residents ( P = 0.049) were more likely to score male trainees higher than female trainees. The GRS demonstrated high inter-rater reliability across male and female trainees by years and scope of practice for the respondent (alpha >0.900) when compared to the Checklist assessment tool. CONCLUSIONS: Early career male surgeons may exhibit gender bias against women when evaluating trainee performance of coronary anastomoses. The GRS demonstrates higher interrater reliability and robustness against gender bias in the assessment of technical performance than the Checklist, and such scales should be emphasized in educational evaluations.


Asunto(s)
Internado y Residencia , Humanos , Masculino , Femenino , Reproducibilidad de los Resultados , Sexismo , Estudios Prospectivos , Evaluación Educacional/métodos , Competencia Clínica
13.
Am J Infect Control ; 51(2): 205-213, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35644297

RESUMEN

OBJECTIVES: To describe daily environmental cleaning and disinfection practices and their associations with cleaning rates while exploring contextual factors experienced by healthcare workers involved in the cleaning process. METHODS: A convergent mixed methods approach using quantitative observations (ie, direct observation of environmental service staff performing environmental cleaning using a standardized observation form) and qualitative interviews (ie, semistructured interviews of key healthcare workers) across 3 Veterans Affairs acute and long-term care facilities. RESULTS: Between December 2018 and May 2019 a total of sixty-two room observations (N = 3602 surfaces) were conducted. The average observed surface cleaning rate during daily cleaning in patient rooms was 33.6% for all environmental surfaces and 60.0% for high-touch surfaces (HTS). Higher cleaning rates were observed with bathroom surfaces (Odds Ratio OR = 3.23), HTSs (OR = 1.57), and reusable medical equipment (RME) (OR = 1.40). Lower cleaning rates were observed when cleaning semiprivate rooms (OR = 0.71) and rooms in AC (OR = 0.56). In analysis stratified by patient presence (ie, present, or absent) in the room during cleaning, patient absence was associated with higher cleaning rates for HTSs (OR = 1.71). In addition, the odds that bathroom surfaces being cleaned more frequently than bedroom surfaces decreased (OR = 1.97) as well as the odds that private rooms being cleaned more frequently than semi-private rooms also decreased (OR = 0.26; 0.07-0.93). Between January and June 2019 eighteen qualitative interviews were conducted and found key themes (ie, patient presence and semiprivate rooms) as potential barriers to cleaning; this supports findings from the quantitative analysis. CONCLUSION: Overall observed rates of daily cleaning of environmental surfaces in both acute and long-term care was low. Standardized environmental cleaning practices to address known barriers, specifically cleaning practices when patients are present in rooms and semi-private rooms are needed to achieve improvements in cleaning rates.


Asunto(s)
Infección Hospitalaria , Veteranos , Humanos , Desinfección/métodos , Cuidados a Largo Plazo , Instituciones de Salud , Habitaciones de Pacientes , Infección Hospitalaria/prevención & control
14.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36326834

RESUMEN

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Humanos , Animales , Ratones , Pulmón/patología , Lesión Pulmonar Aguda/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Fosfofructoquinasa-2/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
15.
ACS Omega ; 7(32): 28434-28444, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990476

RESUMEN

New antibiotics with unique biological targets are desperately needed to combat the growing number of resistant bacterial pathogens. ATP synthase, a critical protein found in all life, has recently become a target of interest for antibiotic development due to the success of the anti-tuberculosis drug bedaquiline, and while many groups have worked on developing drugs to target bacterial ATP synthase, few have been successful at inhibiting Pseudomonas aeruginosa (PA) ATP synthase specifically. PA is one of the leading causes of resistant nosocomial infections across the world and is extremely challenging to treat due to its various antibiotic resistance mechanisms for most commonly used antibiotics. Herein, we detail the synthesis and evaluation of a series of C1/C2 quinoline analogues for their ability to inhibit PA ATP synthase and act as antibiotics against wild-type PA. From this survey, we found six compounds capable of inhibiting PA ATP synthase in vitro showing that bulky/hydrophobic C1/C2 substitutions are preferred. The strongest inhibitor showed an IC50 of 10 µg/mL and decreased activity of PA ATP synthase to 24% relative to the control. While none of the compounds were able to inhibit wild-type PA in cell culture, two showed improved inhibition of PA growth when permeability of the outer membrane was increased or efflux was knocked out, thus demonstrating that these compounds could be further developed into efficacious antibiotics.

16.
Pulm Circ ; 12(3): e12105, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874852

RESUMEN

Right ventricular (RV) failure is the primary cause of death in pulmonary hypertension (PH), but the mechanisms of RV failure are not well understood. We hypothesized macrophages in the RV contribute to the RV response in PH. We induced PH in mice with hypoxia (FiO2 10%) and Schistosoma mansoni exposure, and in rats with SU5416-hypoxia. We quantified cardiac macrophages in mice using flow cytometry. Parabiosis between congenic CD45.1/.2 mice or Cx3cr1-green fluorescent protein and wild-type mice was used to quantify circulation-derived macrophages in experimental PH conditions. We administered clodronate liposomes to Sugen hypoxia (SU-Hx) exposed rats to deplete macrophages and evaluated the effect on the extracellular matrix (ECM) and capillary network in the RV. In hypoxia exposed mice, the overall number of macrophages did not significantly change but two macrophage subpopulations increased. Parabiosis identified populations of RV macrophages that at steady state is derived from the circulation, with one subpopulation that significantly increased with PH stimuli. Clodronate treatment of SU-Hx rats resulted in a change in the RV ECM, without altering the RV vasculature, and correlated with improved RV function. Populations of RV macrophages increase and contribute to RV remodeling in PH, including through regulation of the RV ECM.

17.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35680144

RESUMEN

BACKGROUND: Signalling through platelet-derived growth factor receptor (PDGFR), colony-stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor kit (c-KIT) plays a critical role in pulmonary arterial hypertension (PAH). We examined the preclinical efficacy of inhaled seralutinib, a unique small-molecule PDGFR/CSF1R/c-KIT kinase inhibitor in clinical development for PAH, in comparison to a proof-of-concept kinase inhibitor, imatinib. METHODS: Seralutinib and imatinib potency and selectivity were compared. Inhaled seralutinib pharmacokinetics/pharmacodynamics were studied in healthy rats. Efficacy was evaluated in two rat models of PAH: SU5416/Hypoxia (SU5416/H) and monocrotaline pneumonectomy (MCTPN). Effects on inflammatory/cytokine signalling were examined. PDGFR, CSF1R and c-KIT immunohistochemistry in rat and human PAH lung samples and microRNA (miRNA) analysis in the SU5416/H model were performed. RESULTS: Seralutinib potently inhibited PDGFRα/ß, CSF1R and c-KIT. Inhaled seralutinib demonstrated dose-dependent inhibition of lung PDGFR and c-KIT signalling and increased bone morphogenetic protein receptor type 2 (BMPR2). Seralutinib improved cardiopulmonary haemodynamic parameters and reduced small pulmonary artery muscularisation and right ventricle hypertrophy in both models. In the SU5416/H model, seralutinib improved cardiopulmonary haemodynamic parameters, restored lung BMPR2 protein levels and decreased N-terminal pro-brain natriuretic peptide (NT-proBNP), more than imatinib. Quantitative immunohistochemistry in human lung PAH samples demonstrated increased PDGFR, CSF1R and c-KIT. miRNA analysis revealed candidates that could mediate seralutinib effects on BMPR2. CONCLUSIONS: Inhaled seralutinib was an effective treatment of severe PAH in two animal models, with improved cardiopulmonary haemodynamic parameters, a reduction in NT-proBNP, reverse remodelling of pulmonary vascular pathology and improvement in inflammatory biomarkers. Seralutinib showed greater efficacy compared to imatinib in a preclinical study.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , Ratas , Humanos , Animales , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/metabolismo , Mesilato de Imatinib/uso terapéutico , Monocrotalina , Hipertensión Pulmonar Primaria Familiar , Arteria Pulmonar , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Hipoxia , MicroARNs/metabolismo , Modelos Animales de Enfermedad
18.
Nat Commun ; 13(1): 3639, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752637

RESUMEN

In-situ study of comet 1P/Halley during its 1986 apparition revealed a surprising abundance of organic coma species. It remained unclear, whether or not these species originated from polymeric matter. Now, high-resolution mass-spectrometric data collected at comet 67P/Churyumov-Gerasimenko by ESA's Rosetta mission unveil the chemical structure of complex cometary organics. Here, we identify an ensemble of individual molecules with masses up to 140 Da while demonstrating inconsistency of the data with relevant amounts of polymeric matter. The ensemble has an average composition of C1H1.56O0.134N0.046S0.017, identical to meteoritic soluble organic matter, and includes a plethora of chain-based, cyclic, and aromatic hydrocarbons at an approximate ratio of 6:3:1. Its compositional and structural properties, except for the H/C ratio, resemble those of other Solar System reservoirs of organics-from organic material in the Saturnian ring rain to meteoritic soluble and insoluble organic matter -, which is compatible with a shared prestellar history.


Asunto(s)
Medio Ambiente Extraterrestre , Meteoroides , Medio Ambiente Extraterrestre/química , Espectrometría de Masas , Sistema Solar
19.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763400

RESUMEN

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratones , Arteria Pulmonar/metabolismo , Ratas , Esclerodermia Sistémica/patología , Remodelación Vascular
20.
Clin Cancer Res ; 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443062

RESUMEN

PURPOSE: Neoadjuvant chemotherapy prior to definitive surgery has been utilized widely for locally advanced oral squamous cell carcinoma (OSCC). We evaluated neoadjuvant erlotinib with platinum-docetaxel vs. placebo with platinum-docetaxel in stage III-IVB OSCC patients. EXPERIMENTAL DESIGN: Patients with newly diagnosed stage III, IVA, IVB (AJCC 7th) OSCC amenable to surgical resection were included. Patients were randomized to receive up to 3 cycles of chemotherapy with concurrent erlotinib or placebo, followed by surgery. The primary endpoint was major pathologic response (MPR) rate, secondary endpoints included safety, overall (OS) and progression-free survival (PFS). RESULTS: Fifty-two patients received at least one cycle of treatment and 47 were evaluable with surgical resection. MPR rate was not different between erlotinib (30%, 7/23) and placebo arms (41.7%, 10/24) (p=0.55). At median follow up of 26.5 months, there was no difference on OS or PFS between groups. Patients who received erlotinib with chemotherapy and achieved MPR (n=7) had no recurrence. The treatment-related adverse event rates were not different between the two groups (96% vs. 96%). However, rash, mostly low grade, was more common in the erlotinib arm (79% vs. 50%). Transcriptomic analysis in the pre-treatment samples indicated that genes in protein glycosylation and Wnt signaling pathways were associated with benefit in those treated with erlotinib plus chemotherapy. CONCLUSIONS: The addition of erlotinib to platinum-taxane chemotherapy was well-tolerated but did not induce higher rates of MPR or PFS or OS survival benefit. Patients who received chemotherapy with erlotinib and achieved major pathological responses had excellent clinical outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...