Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-24580226

RESUMEN

Phase transitions in two-dimensional (2D) systems are of considerable fundamental and practical importance. However, the kinetics of these processes are difficult to predict and understand, even in simple systems for which equilibrium states are properly described, owing to the difficulty of studying crystallites with single-particle resolution and free of defects. Here we introduce an alternative method for the sublimation of 2D colloidal crystallites by a sudden induction of repulsive forces between the particles. The sublimation kinetics, studied in real space by microscopy and by computer simulations, shows a scaling behavior that suggests a universal mechanism fundamentally different from the one usually accepted for thermal sublimation. The universal behavior found for the early stages of the process may be useful for understanding the dynamic features of particle systems at liquid interfaces and for designing technological applications without the need of performing extensive experimental studies.

2.
Langmuir ; 27(7): 3391-400, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21361305

RESUMEN

The structure and the interaction potential of monolayers of charged polystyrene microparticles at fluid interfaces have been studied by optical microscopy. Microparticles of different sizes have been studied over a broad range of surface particle densities. The structural characterization is based on the analysis of images obtained by digital optical microscopy. From the experimental images, radial distribution functions, hexagonal bond order correlation functions, and temporal orientational correlation functions have been calculated for different monolayer states at both the air/water and oil/water interfaces. The interaction potential has been calculated from the structure factor using integral equations within the hypernetted chain closure relationship. For particles trapped at the oil-water interface, it was found that, upon increasing the surface coverage, a freezing transition occurs, that leads to the formation of a 2D crystalline structure. We have studied the freezing densities of particle monolayers at the oil/water interface and compared them with Monte Carlo simulation results reported by H. Löwen. In contrast, at the air-water interface, freezing is inhibited due to the formation of particle aggregates.

3.
J Chem Phys ; 124(1): 14503, 2006 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-16409037

RESUMEN

Brillouin spectra obtained in dynamic light-scattering experiments are reported for the three isomeric xylenes (ortho-, meta-, and paradimethylbenzenes) between 288 and 363 K. Limiting sound velocities and relaxation times, as obtained from the polarized spectra using the theory developed by Mountain [J. Res. Natl. Bur. Stand. 70A, 207 (1966)], reveal the existence of a relaxation process. Our results suggest that the relaxation process in liquid xylenes has a purely vibrational nature. Vibrational-translational energy exchanges in xylenes are analyzed in terms of available molecular models and compared to those previously obtained for toluene and benzene. The results presented here confirm the important role played by the molecular geometry in the vibrational relaxation process, as the relative arrangement of the methyl groups has significant effect in determining the relaxing vibrational modes.

4.
J Chem Phys ; 120(3): 1426-35, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15268268

RESUMEN

We use a dynamic light scattering technique to measure both polarized (VV) and depolarized (VH) spectra of liquid diphenylmethane (DPM) between 288 and 362 K, covering both normal and supercooled liquid ranges. Our results allow extracting information on structural relaxation processes, rotational motions, rotation-translation couplings, and molecular reorientation phenomena in liquid DPM. The VV spectra are modeled according to the microscopic theory of Wang, which assumes that a structural relaxation process dominates the spectrum. We find that the relaxation time of the structural relaxation in DPM follows an Arrhenius behavior. The Rayleigh dip was observed in the VH spectra, which are described using the Andersen-Pecora theory. Our results are discussed in terms of the rotation-translation coupling parameter, which we find independent of temperature over the experimental range. The collective reorientation time also follows an Arrhenius behavior with temperature. Finally, we calculate the hydrodynamic volumes for the reorientation process from geometric molecular models in two hydrodynamic limits: slip and stick boundary conditions. Our results suggest that the DMP molecule reorientates in quasi-slipping conditions in the bulk liquid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA