Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227807

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of FTLD in MND is difficult to estimate. In this work we describe a large clinicopathologic series of MND, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multi-centre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data, and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (p < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (p = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% vs 61.4%; p < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.

2.
Brain ; 147(4): 1511-1525, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37988272

RESUMEN

It is debated whether primary progressive apraxia of speech (PPAOS) and progressive agrammatic aphasia (PAA) belong to the same clinical spectrum, traditionally termed non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), or exist as two completely distinct syndromic entities with specific pathologic/prognostic correlates. We analysed speech, language and disease severity features in a comprehensive cohort of patients with progressive motor speech impairment and/or agrammatism to ascertain evidence of naturally occurring, clinically meaningful non-overlapping syndromic entities (e.g. PPAOS and PAA) in our data. We also assessed if data-driven latent clinical dimensions with aetiologic/prognostic value could be identified. We included 98 participants, 43 of whom had an autopsy-confirmed neuropathological diagnosis. Speech pathologists assessed motor speech features indicative of dysarthria and apraxia of speech (AOS). Quantitative expressive/receptive agrammatism measures were obtained and compared with healthy controls. Baseline and longitudinal disease severity was evaluated using the Clinical Dementia Rating Sum of Boxes (CDR-SB). We investigated the data's clustering tendency and cluster stability to form robust symptom clusters and employed principal component analysis to extract data-driven latent clinical dimensions (LCD). The longitudinal CDR-SB change was estimated using linear mixed-effects models. Of the participants included in this study, 93 conformed to previously reported clinical profiles (75 with AOS and agrammatism, 12 PPAOS and six PAA). The remaining five participants were characterized by non-fluent speech, executive dysfunction and dysarthria without apraxia of speech or frank agrammatism. No baseline clinical features differentiated between frontotemporal lobar degeneration neuropathological subgroups. The Hopkins statistic demonstrated a low cluster tendency in the entire sample (0.45 with values near 0.5 indicating random data). Cluster stability analyses showed that only two robust subgroups (differing in agrammatism, executive dysfunction and overall disease severity) could be identified. Three data-driven components accounted for 71% of the variance [(i) severity-agrammatism; (ii) prominent AOS; and (iii) prominent dysarthria]. None of these data-driven LCDs allowed an accurate prediction of neuropathology. The severity-agrammatism component was an independent predictor of a faster CDR-SB increase in all the participants. Higher dysarthria severity, reduced words per minute and expressive and receptive agrammatism severity at baseline independently predicted accelerated disease progression. Our findings indicate that PPAOS and PAA, rather than exist as completely distinct syndromic entities, constitute a clinical continuum. In our cohort, splitting the nfvPPA spectrum into separate clinical phenotypes did not improve clinical-pathological correlations, stressing the need for new biological markers and consensus regarding updated terminology and clinical classification.


Asunto(s)
Afasia Progresiva Primaria , Apraxias , Afasia Progresiva Primaria no Fluente , Humanos , Afasia de Broca/patología , Disartria , Apraxias/patología , Lenguaje , Habla
3.
Clin Chem Lab Med ; 61(9): 1580-1589, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37083158

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is considered the most common cause of dementia in older people. Recently, blood-based markers (BBM) Aß1-42, Aß1-40, and phospho Tau181 (p-Tau181) have demonstrated the potential to transform the diagnosis and prognostic assessment of AD. Our aim was to investigate the effect of different storage conditions on the quantification of these BBM and to evaluate the interchangeability of plasma and serum samples. METHODS: Forty-two individuals with some degree of cognitive impairment were studied. Thirty further patients were retrospectively selected. Aß1-42, Aß1-40, and p-Tau181 were quantified using the LUMIPULSE-G600II automated platform. To assess interchangeability between conditions, correction factors for magnitudes that showed strong correlations were calculated, followed by classification consistency studies. RESULTS: Storing samples at 4 °C for 8-9 days was associated with a decrease in Aß fractions but not when stored for 1-2 days. Using the ratio partially attenuated the pre-analytical effects. For p-Tau181, samples stored at 4 °C presented lower concentrations, whereas frozen samples presented higher ones. Concerning classification consistency in comparisons that revealed strong correlations (p-Tau181), the percentage of total agreement was greater than 90 % in a large number of the tested cut-offs values. CONCLUSIONS: Our findings provide relevant information for the standardization of sample collection and storage in the analysis of AD BBM in an automated platform. This knowledge is crucial to ensure their introduction into clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico , Proteínas tau , Péptidos beta-Amiloides , Estudios Retrospectivos , Biomarcadores
4.
J Neuroimaging ; 33(2): 302-309, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36415025

RESUMEN

BACKGROUND AND PURPOSE: Hypoechogenicity of the raphe nuclei (hR) has been related to major depression. Comorbidity between migraine and depression is bidirectional postulating a common mechanism of serotonergic dysfunction. We aimed to investigate the association between migraine and hR and its role as biomarker of migraine-associated depression and disease severity. METHODS: This is a single-center cross-sectional descriptive study. We included consecutive patients with episodic (EM) and chronic migraine (CM). We collected their comorbidities, analgesic consumption, hospital anxiety and depression scale (HADS), disability, and impact on quality of life associated with migraine. We also included a group of control subjects, matched for age and sex with the patients. In both groups, hR was assessed by means of transcranial sonography. We performed a meta-analysis of the studies investigating the association between migraine and hR. RESULTS: A total of 107 subjects were included (57 cases and 50 controls). hR rate was lower in controls than in migraine patients (22.2% vs. 42.9%, p = .02) with a progressive increase in EM and CM groups respect to the control group (33.3% and 50% vs. 22.2%, respectively; p = .03). Among patients, hR was not associated with depression, higher HADS score, greater migraine-related disability, or higher consumption of analgesic medication. The meta-analysis showed a significant association between migraine and hR (odds ratio = 2.16; 95% confidence interval: 1.42-3.29). CONCLUSION: hR is more prevalent in migraine patients than in controls and, in our population, its prevalence increases in a stepwise manner in patients with EM and CM. These findings support the role of raphe nuclei in migraine pathophysiology.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Migrañosos , Humanos , Estudios de Casos y Controles , Calidad de Vida , Estudios Transversales , Trastornos Migrañosos/epidemiología , Núcleos del Rafe , Analgésicos , Biomarcadores
5.
Artículo en Inglés | MEDLINE | ID: mdl-36460480

RESUMEN

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown etiology and poorly understood pathophysiology. There is no specific biomarker either for diagnosis or prognosis. The aim of our study was to investigate differentially expressed proteins in the CSF and serum from patients with ALS to determine their role in the disease process and evaluate their utility as diagnostic or prognostic biomarkers. METHODS: We performed mass spectrometry in the CSF from 3 patients with ALS and 3 healthy controls (HCs). The results were compared with motor cortex dysregulated transcripts obtained from 11patients with sporadic ALS and 8 HCs. Candidate proteins were tested using ELISA in the serum of 123 patients with ALS, 30 patients with Alzheimer disease (AD), 28 patients with frontotemporal dementia (FTD), and 102 HCs. Patients with ALS, AD, and FTD were prospectively recruited from January 2003 to December 2020. A group of age-matched HCs was randomly selected from the Sant Pau Initiative on Neurodegeneration cohort of the Sant Pau Memory Unit. RESULTS: Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and osteopontin (Spp1) were differentially expressed in the CSF and the motor cortex transcriptome of patients with ALS compared with that in HCs (p < 0.05). NOD2 and Spp1 levels were significantly higher in sera from patients with ALS than in HCs (p < 0.001). Receiver operating characteristic analysis showed an area under the curve of 0.63 for NOD2 and 0.81 for Spp1. NOD2 levels were significantly lower in patients with AD and FTD than in patients with ALS (p < 0.0001), but we found no significant differences in Spp1 levels between patients with ALS, AD (p = 0.51), and FTD (p = 0.42). We found a negative correlation between Spp1 levels and ALS functional rating scale (r = -0.24, p = 0.009). DISCUSSION: Our discovery-based approach identified NOD2 as a novel biomarker in ALS and adds evidence to the contribution of Spp1 in the disease process. Both proteins are involved in innate immunity and autophagy and are increased in the serum from patients with ALS. Our data support a relevant role of neuroinflammation in the pathophysiology of the disease and may identify targets for disease-modifying treatments in ALS. Further longitudinal studies should investigate the diagnostic and prognostic value of NOD2 and Spp1 in clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Osteopontina , Enfermedades Neuroinflamatorias , Proteína Adaptadora de Señalización NOD2/genética
6.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168408

RESUMEN

BACKGROUND: Recently developed blood markers for Alzheimer's disease (AD) detection have high accuracy but usually require ultra-sensitive analytic tools not commonly available in clinical laboratories, and their performance in clinical practice is unknown. METHODS: We analyzed plasma samples from 290 consecutive participants that underwent lumbar puncture in routine clinical practice in a specialized memory clinic (66 cognitively unimpaired, 130 participants with mild cognitive impairment, and 94 with dementia). Participants were classified as amyloid positive (A+) or negative (A-) according to CSF Aß1-42/Aß1-40 ratio. Plasma pTau217, pTau181, Aß1-42 and Aß1-40 were measured in the fully-automated LUMIPULSE platform. We used linear regression to compare plasma biomarkers concentrations between A + and A- groups, evaluated Spearman's correlation between plasma and CSF and performed ROC analyses to assess their diagnostic accuracy to detect brain amyloidosis as determined by CSF Aß1-42/Aß1-40 ratio. We analyzed the potential of pTau217 to predict amyloidosis in CSF. RESULTS: Plasma pTau217 and pTau181 concentration were higher in A + than A- while the plasma Aß1-42/Aß1-40 ratio was lower in A + compared to A-. pTau181 and the Aß1-42/Aß1-40 ratio showed moderate correlation between plasma and CSF (Rho = 0.66 and 0.69, respectively). The areas under the ROC curve to discriminate A + from A- participants were 0.94 (95% CI 0.92-0.97) for pTau217, and 0.88 (95% CI 0.84-0.92) for both pTau181 and Aß1-42/Aß1-40. Chronic kidney disease (CKD) was related to increased plasma biomarker concentrations, but ratios were less affected. Plasma pTau217 had the highest fold change (x4.2) and showed high predictive capability in discriminating A + from A-, having 4-7% misclassification rate. The global accuracy of plasma pTau217 using a two-threshold approach was robust in symptomatic groups, exceeding 90%. CONCLUSION: The evaluation of blood biomarkers on an automated platform exhibited high diagnostic accuracy for AD pathophysiology, and pTau217 showed excellent diagnostic accuracy to identify participants with AD in a consecutive sample representing the routine clinical practice in a specialized memory unit.

7.
iScience ; 24(2): 102058, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33554064

RESUMEN

It has been suggested that aberrant activation of glycogen synthase kinase-3-beta (GSK-3ß) can trigger abnormal tau hyperphosphorylation and aggregation, which ultimately leads to neuronal/synaptic damage and impaired cognition in Alzheimer disease (AD). We examined if isoform-selective partial reduction of GSK-3ß can decrease pathological tau changes, including hyperphosphorylation, aggregation, and spreading, in mice with localized human wild-type tau (hTau) expression in the brain. We used adeno-associated viruses (AAVs) to express hTau locally in the entorhinal cortex of wild-type and GSK-3ß hemi-knockout (GSK-3ß-HK) mice. GSK-3ß-HK mice had significantly less accumulation of hyperphosphorylated tau in synapses and showed a significant decrease of tau protein spread between neurons. In primary neuronal cultures from GSK-3ß-HK mice, the aggregation of exogenous FTD-mutant tau was also significantly reduced. These results show that a partial decrease of GSK-3ß significantly represses tau-initiated neurodegenerative changes in the brain, and therefore is a promising therapeutic target for AD and other tauopathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...