Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 14(2): 171-182, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23954156

RESUMEN

Host-adapted Salmonella strains are responsible for a number of disease manifestations in mammals, including an asymptomatic chronic infection in which bacteria survive within macrophages located in systemic sites. However, the host cell physiology and metabolic requirements supporting bacterial persistence are poorly understood. In a mouse model of long-term infection, we found that S. typhimurium preferentially associates with anti-inflammatory/M2 macrophages at later stages of infection. Further, PPARδ, a eukaryotic transcription factor involved in sustaining fatty acid metabolism, is upregulated in Salmonella-infected macrophages. PPARδ deficiency dramatically inhibits Salmonella replication, which is linked to the metabolic state of macrophages and the level of intracellular glucose available to bacteria. Pharmacological activation of PPARδ increases glucose availability and enhances bacterial replication in macrophages and mice, while Salmonella fail to persist in Pparδ null mice. These data suggest that M2 macrophages represent a unique niche for long-term intracellular bacterial survival and link the PPARδ-regulated metabolic state of the host cell to persistent bacterial infection.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/microbiología , PPAR delta/metabolismo , Salmonella typhimurium/fisiología , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Ratones , Viabilidad Microbiana , Salmonelosis Animal , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo
2.
Nature ; 490(7419): 288-91, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22895188

RESUMEN

Inflammasomes are cytosolic multiprotein complexes assembled by intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and they initiate innate immune responses to invading pathogens and danger signals by activating caspase-1 (ref. 1). Caspase-1 activation leads to the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18, as well as lytic inflammatory cell death known as pyroptosis. Recently, a new non-canonical inflammasome was described that activates caspase-11, a pro-inflammatory caspase required for lipopolysaccharide-induced lethality. This study also highlighted that previously generated caspase-1 knockout mice lack a functional allele of Casp11 (also known as Casp4), making them functionally Casp1 Casp11 double knockouts. Previous studies have shown that these mice are more susceptible to infections with microbial pathogens, including the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium), but the individual contributions of caspase-1 and caspase-11 to this phenotype are not known. Here we show that non-canonical caspase-11 activation contributes to macrophage death during S. typhimurium infection. Toll-like receptor 4 (TLR4)-dependent and TIR-domain-containing adaptor-inducing interferon-ß (TRIF)-dependent interferon-ß production is crucial for caspase-11 activation in macrophages, but is only partially required for pro-caspase-11 expression, consistent with the existence of an interferon-inducible activator of caspase-11. Furthermore, Casp1(-/-) mice were significantly more susceptible to infection with S. typhimurium than mice lacking both pro-inflammatory caspases (Casp1(-/-) Casp11(-/-)). This phenotype was accompanied by higher bacterial counts, the formation of extracellular bacterial microcolonies in the infected tissue and a defect in neutrophil-mediated clearance. These results indicate that caspase-11-dependent cell death is detrimental to the host in the absence of caspase-1-mediated innate immunity, resulting in extracellular replication of a facultative intracellular bacterial pathogen.


Asunto(s)
Caspasas/metabolismo , Susceptibilidad a Enfermedades/enzimología , Salmonelosis Animal/enzimología , Adyuvantes Inmunológicos/farmacología , Animales , Caspasas Iniciadoras , Muerte Celular , Células Cultivadas , Regulación de la Expresión Génica , Inflamasomas/inmunología , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Ratones Noqueados , Salmonelosis Animal/genética , Salmonella typhimurium/fisiología , Transducción de Señal
3.
FEMS Microbiol Rev ; 36(3): 600-15, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22335190

RESUMEN

Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time and pose significant public-health problems. Multidrug-resistant S. enterica serovar Typhi (S. Typhi) and nontyphoidal Salmonella (NTS) are on the increase and are often associated with HIV infection. Chronically infected hosts are often asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. Salmonella utilizes multiple ways to evade and modulate host innate and adaptive immune responses in order to persist in the presence of a robust immune response. Survival in macrophages and modulation of immune cells migration allow Salmonella to evade various immune responses. The ability of Salmonella to persist depends on a balance between immune responses that lead to the clearance of the pathogen and avoidance of damage to host tissues.


Asunto(s)
Portador Sano/inmunología , Portador Sano/microbiología , Interacciones Huésped-Patógeno , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad , Animales , Enfermedades Asintomáticas , Enfermedad Crónica , Humanos , Evasión Inmune , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/patología , Salmonelosis Animal/inmunología , Salmonelosis Animal/patología
4.
F1000 Biol Rep ; 3: 1, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21399762

RESUMEN

Bacterial persistence is of major concern as persistent bacterial infections involving bacteria such as Helicobacter pylori, Salmonella enterica serotype Typhi, and Mycobacterium tuberculosis pose significant public health problems worldwide. This report discusses the recent advances in understanding the strategies used by bacteria during persistent infection that allow them to colonize specific sites in the host and evade immune surveillance.

5.
J Immunol ; 184(7): 3755-67, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20176744

RESUMEN

Recognition of intracellular bacteria by macrophages leads to secretion of type I IFNs. However, the role of type I IFN during bacterial infection is still poorly understood. Francisella tularensis, the causative agent of tularemia, is a pathogenic bacterium that replicates in the cytosol of macrophages leading to secretion of type I IFN. In this study, we investigated the role of type I IFNs in a mouse model of tularemia. Mice deficient for type I IFN receptor (IFNAR1(-/-)) are more resistant to intradermal infection with F. tularensis subspecies novicida (F. novicida). Increased resistance to infection was associated with a specific increase in IL-17A/F and a corresponding expansion of an IL-17A(+) gammadelta T cell population, indicating that type I IFNs negatively regulate the number of IL-17A(+) gammadelta T cells during infection. Furthermore, IL-17A-deficient mice contained fewer neutrophils compared with wild-type mice during infection, indicating that IL-17A contributes to neutrophil expansion during F. novicida infection. Accordingly, an increase in IL-17A in IFNAR1(-/-) mice correlated with an increase in splenic neutrophil numbers. Similar results were obtained in a mouse model of pneumonic tularemia using the highly virulent F. tularensis subspecies tularensis SchuS4 strain and in a mouse model of systemic Listeria monocytogenes infection. Our results indicate that the type I IFN-mediated negative regulation of IL-17A(+) gammadelta T cell expansion is conserved during bacterial infections. We propose that this newly described activity of type I IFN signaling might participate in the resistance of the IFNAR1(-/-) mice to infection with F. novicida and other intracellular bacteria.


Asunto(s)
Infecciones Bacterianas/inmunología , Interferón Tipo I/inmunología , Interleucina-17/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Animales , Infecciones Bacterianas/metabolismo , Separación Celular , Citometría de Flujo , Interleucina-17/inmunología , Listeriosis/inmunología , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Tularemia/inmunología , Tularemia/metabolismo
6.
Immunogenetics ; 61(1): 55-70, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19009289

RESUMEN

Recent large-scale cDNA cloning studies have shown that a significant proportion of the transcripts expressed from vertebrate genomes do not appear to encode protein. Moreover, it was reported in mammals (human and mice) that these non-coding transcripts are expressed and regulated by mechanisms similar to those involved in the control of protein-coding genes. We have produced a collection of cDNA sequences from immunologically active tissues with the aim of discovering chicken genes involved in immune mechanisms, and we decided to explore the non-coding component of these immune-related libraries. After finding known non-coding RNAs (miRNA, snRNA, snoRNA), we identified new putative mRNA-like non-coding RNAs. We characterised their expression profiles in immune-related samples. Some of them showed changes in expression following viral infections. As they exhibit patterns of expression that parallel the behaviour of protein-coding RNAs in immune tissues, our study suggests that they could play an active role in the immune response.


Asunto(s)
Pollos/genética , ADN Complementario/genética , ARN no Traducido/genética , Animales , Infecciones por Birnaviridae/genética , Infecciones por Birnaviridae/inmunología , Pollos/inmunología , Etiquetas de Secuencia Expresada , Femenino , Perfilación de la Expresión Génica , Biblioteca de Genes , Activación de Linfocitos , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Masculino , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , MicroARNs/genética , MicroARNs/aislamiento & purificación , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , ARN no Traducido/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Linfocitos T/inmunología
7.
J Virol ; 80(18): 9207-16, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16940532

RESUMEN

Using a novel cDNA microarray prepared from sources of actively responding immune system cells, we have investigated the changes in gene expression in the target tissue during the early stages of infection of neonatal chickens with infectious bursal disease virus. Infections of two lines of chickens previously documented as genetically resistant and sensitive to infection were compared in order to ascertain early differences in the response to infection that might provide clues to the mechanism of differential genetic resistance. In addition to major changes that could be explained by previously described changes in infected tissue, some differences in gene expression on infection, and differences between the two chicken lines, were observed that led to a model for resistance in which a more rapid inflammatory response and more-extensive p53-related induction of apoptosis in the target B cells might limit viral replication and consequent pathology. Ironically, the effect in the asymptomatic neonatal infection is that more-severe B-cell depletion is seen in the more genetically resistant chicken. Changes of expression of many chicken genes of unknown function, indicating possible roles in the response to infection, may aid in the functional annotation of these genes.


Asunto(s)
Predisposición Genética a la Enfermedad , Inflamación , Transcripción Genética , Virosis/etiología , Virosis/genética , Animales , Apoptosis , Pollos , ADN Complementario/metabolismo , Eimeria tenella/metabolismo , Perfilación de la Expresión Génica , Sistema Inmunológico , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína p53 Supresora de Tumor/metabolismo
8.
Immunogenetics ; 57(1-2): 116-28, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15744538

RESUMEN

We have identified and characterised a cluster of six TRIM-B30.2 genes flanking the chicken BF/BL region of the B complex. The TRIM-B30.2 proteins are a subgroup of the TRIM protein family containing the tripartite motif (TRIM), consisting of a RING domain, a B-box and a coiled coil region, and a B30.2-like domain. In humans, a cluster of seven TRIM-B30.2 genes has been characterised within the MHC on Chromosome 6p21.33. Among the six chicken TRIM-B30.2 genes two are orthologous to those of the human MHC, and two (TRIM41 and TRIM7) are orthologous to human genes located on Chromosome 5. In humans, these last two genes are adjacent to GNB2L1, a guanine nucleotide-binding protein gene, the ortholog of the chicken c12.3 gene situated in the vicinity of the TRIM-B30.2 genes. This suggests that breakpoints specific to mammals have occurred and led to the remodelling of their MHC structure. In terms of structure, like their mammalian counterparts, each chicken gene consists of five coding exons; exon 1 encodes the RING domain and the B-box, exons 2, 3 and 4 form the coiled-coil region, and the last exon represents the B30.2-like domain. Phylogenetic analysis led us to assume that this extended BF/BL region may be similar to the human extended class I region, because it contains a cluster of BG genes sharing an Ig-V like domain with the BTN genes (Henry et al. 1997a) and six TRIM-B30.2 genes containing the B30.2-like domain, shared with the TRIM-B30.2 members and the BTN genes.


Asunto(s)
Pollos/genética , Genes MHC Clase I , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA