Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400543

RESUMEN

Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (ß-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of ß-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.


Asunto(s)
Celulasas , Saccharomycetales , Celobiosa/metabolismo , Temperatura , Fermentación , Xilosa/metabolismo , Saccharomycetales/metabolismo , Etanol/metabolismo , Ingeniería Metabólica , Glucosa
2.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474952

RESUMEN

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Asunto(s)
Antibacterianos , Eucariontes , Antibacterianos/farmacología , Riboflavina
3.
Yeast ; 40(8): 360-366, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36751139

RESUMEN

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.


Asunto(s)
Debaryomyces , Mononucleótido de Flavina , Saccharomyces cerevisiae , Candida/genética , Lactosa , Riboflavina , Glucosa
4.
Microb Cell Fact ; 21(1): 161, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964025

RESUMEN

BACKGROUND: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines. Currently, industrial riboflavin production uses the bacterium, Bacillus subtilis, and the filamentous fungus, Ashbya gossypii, and utilizes glucose and/or oils as carbon substrates. RESULTS: We studied riboflavin biosynthesis in the flavinogenic yeast Candida famata that is a genetically stable riboflavin overproducer. Here it was found that the wild type C. famata is characterized by robust growth on lactose and cheese whey and the engineered strains also overproduce riboflavin on whey. The riboflavin synthesis on whey was close to that obtained on glucose. To further enhance riboflavin production on whey, the gene of the transcription activator SEF1 was expressed under control of the lactose-induced promoter of the native ß-galactosidase gene LAC4. These transformants produced elevated amounts of riboflavin on lactose and especially on whey. The strain with additional overexpression of gene RIB6 involved in conversion of ribulose-5-phosphate to riboflavin precursor had the highest titer of accumulated riboflavin in flasks during cultivation on whey. Activation of riboflavin synthesis was also obtained after overexpression of the GND1 gene that is involved in the synthesis of the riboflavin precursor ribulose-5-phosphate. The best engineered strains accumulated 2.5 g of riboflavin/L on whey supplemented only with (NH4)2SO4 during batch cultivation in bioreactor with high yield (more than 300 mg/g dry cell weight). The use of concentrated whey inhibited growth of wild-type and engineered strains of C. famata, so the mutants tolerant to concentrated whey were isolated. CONCLUSIONS: Our data show that the waste of dairy industry is a promising substrate for riboflavin production by C. famata. Possibilities for using the engineered strains of C. famata to produce high-value commodity (riboflavin) from whey are discussed.


Asunto(s)
Queso , Candida/genética , Mononucleótido de Flavina , Glucosa , Lactosa , Fosfatos , Riboflavina , Suero Lácteo
5.
Microb Cell Fact ; 21(1): 162, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964033

RESUMEN

BACKGROUND: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. RESULTS: We isolated an insertional mutant of O. polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O. polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O. polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20-40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. CONCLUSIONS: This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.


Asunto(s)
Proteínas Fúngicas/metabolismo , Xilosa , Etanol/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Pichia/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilosa/metabolismo
6.
Antonie Van Leeuwenhoek ; 114(9): 1373-1385, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170419

RESUMEN

Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic hydrolysates. Effective conversion of xylose to ethanol is one of key prerequisite for the development of an efficient conversion of biomass to ethanol. Engineered Saccharomyces cerevisiae strains are able to xylose fermentation. However, the yield and productivities of xylose fermentation remains lower in comparison with glucose fermentation. In this work, we studied impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose catabolism. We have isolated znf1Δ, adr1Δ, tup1Δ and hap4Δ mutants, and strains overexpressing SIP4, ADR1 and HAP4 genes on the background of xylose-fermenting strain of S. cerevisiae aiming to explore involvement of these transcription factors in regulation of xylose growth and fermentation. It was shown that hap4Δ reveal 1.8-fold increase of ethanol production from xylose as compared to that of parental strain. The hap4Δ mutant accumulates 10.38 g l-1 of ethanol with an overall ethanol yield reaching 0.41 g g-1 of consumed xylose. While the other constructed strains revealed a decrease in ethanol production from this pentose.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Xilosa , Proteínas de Unión al ADN , Fermentación , Glucosa , Proteínas Nucleares , Proteínas Represoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
7.
FEMS Yeast Res ; 21(4)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33983391

RESUMEN

Glucose is a preferred carbon source for most living organisms. The metabolism and regulation of glucose utilization are well studied mostly for Saccharomyces cerevisiae. Xylose is the main pentose sugar released from the lignocellulosic biomass, which has a high potential as a renewable feedstock for bioethanol production. The thermotolerant yeast Ogataea (Hansenula) polymorpha, in contrast to S. cerevisiae, is able to metabolize and ferment not only glucose but also xylose. However, in non-conventional yeasts, the regulation of glucose and xylose metabolism remains poorly understood. In this study, we characterize the role of transcriptional factors Mig1, Mig2, Tup1 and Hap4 in the natural xylose-fermenting yeast O. polymorpha. The deletion of MIG1 had no significant influence on ethanol production either from xylose or glucose, however the deletion of both MIG1 and MIG2 reduced the amount of ethanol produced from these sugars. The deletion of HAP4-A and TUP1 genes resulted in increased ethanol production from xylose. Inversely, the overexpression of HAP4-A and TUP1 genes reduced ethanol production during xylose alcoholic fermentation. Thus, HAP4-A and TUP1 are involved in repression of xylose metabolism and fermentation in yeast O. polymorpha and their deletion could be a viable strategy to improve ethanol production from this pentose.


Asunto(s)
Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Saccharomycetales/metabolismo , Factores de Transcripción/metabolismo , Xilosa/metabolismo , Fermentación , Eliminación de Gen , Microbiología Industrial , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo
8.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33316044

RESUMEN

Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.


Asunto(s)
Biocombustibles , Saccharomyces cerevisiae , Arabinosa , Pentosas , Saccharomyces cerevisiae/genética , Xilosa
9.
Cell Biol Int ; 45(3): 507-517, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31829471

RESUMEN

Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp-a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.


Asunto(s)
Etanol/metabolismo , Fermentación/genética , Genes Fúngicos , Glucosa/metabolismo , Mutagénesis Insercional/genética , Saccharomycetales/genética , Xilosa/metabolismo , Aerobiosis , Carbono/farmacología , Regulación Fúngica de la Expresión Génica , Biblioteca de Genes , Pruebas Genéticas , Hemo/metabolismo , Mutación/genética , Piruvatos/metabolismo
10.
Trends Biotechnol ; 38(8): 907-916, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32584768

RESUMEN

Industrial production of glycerol by yeast, which began during WWI in the so-called Neuberg fermentation, was the first example of metabolic engineering. However, this process, based on bisulfite addition to fermentation liquid, has many drawbacks and was replaced by other methods of glycerol production. Osmotolerant yeasts and other microorganisms that do not require addition of bisulfite to steer cellular metabolism towards glycerol synthesis have been discovered or engineered. Because the glycerol market is expected to reach 5 billion US$ by 2024, microbial fermentation may again become a promising way to produce glycerol. This review summarizes some problems and perspectives on the production of glycerol by natural or engineered eukaryotic and prokaryotic microorganisms.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Glicerol/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Anaerobiosis/genética , Etanol/química , Etanol/metabolismo , Fermentación , Glucosa/genética , Glicerol/química , Humanos , Saccharomyces cerevisiae/metabolismo
11.
Yeast ; 37(9-10): 467-473, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32401376

RESUMEN

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2 ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts. At the same time, the corresponding gene BCRP has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in Debaryomyces hansenii. The closest homolog was expressed under the control of D. hansenii TEF1 promoter in the riboflavin overproducing strain of C. famata. Resulted transformants overexpressed the corresponding gene and produced 1.4- to 1.8-fold more riboflavin as compared with the parental strain. They also were characterized by overexpression of RIB1 and RIB6 genes of riboflavin synthesis and exhibited elevated specific activity of GTP-cyclohydrolase II. Membrane localization of the riboflavin excretase was confirmed by fluorescent microscopy.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Candida/genética , Proteínas Fúngicas/genética , Mamíferos/genética , Riboflavina/metabolismo , Animales , Candida/clasificación , Clonación Molecular , ADN de Hongos/genética , Riboflavina/biosíntesis
12.
Microb Cell Fact ; 19(1): 96, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32334587

RESUMEN

BACKGROUND: Xylose transport is one of the bottlenecks in the conversion of lignocellulosic biomass to ethanol. Xylose consumption by the wild-type strains of xylose-utilizing yeasts occurs once glucose is depleted resulting in a long fermentation process and overall slow and incomplete conversion of sugars liberated from lignocellulosic hydrolysates. Therefore, the engineering of endogenous transporters for the facilitation of glucose-xylose co-consumption is an important prerequisite for efficient ethanol production from lignocellulosic hydrolysates. RESULTS: In this study, several engineering approaches formerly used for the low-affinity glucose transporters in Saccharomyces cerevisiae, were successfully applied for earlier identified transporter Hxt1 in Ogataea polymorpha to improve xylose consumption (engineering involved asparagine substitution to alanine at position 358 and replacement of N-terminal lysine residues predicted to be the target of ubiquitination for arginine residues). Moreover, the modified versions of S. cerevisiae Hxt7 and Gal2 transporters also led to improved xylose fermentation when expressed in O. polymorpha. CONCLUSIONS: The O. polymorpha strains with modified Hxt1 were characterized by simultaneous utilization of both glucose and xylose, in contrast to the wild-type and parental strain with elevated ethanol production from xylose. When the engineered Hxt1 transporter was introduced into constructed earlier advanced ethanol producer form xylose, the resulting strain showed further increase in ethanol accumulation during xylose fermentation. The overexpression of heterologous S. cerevisiae Gal2 had a less profound positive effects on sugars uptake rate, while overexpression of Hxt7 revealed the least impact on sugars consumption.


Asunto(s)
Fermentación , Proteínas Fúngicas/metabolismo , Calor , Pichia/metabolismo , Ingeniería de Proteínas , Xilosa/metabolismo , Alcoholes/química , Alcoholes/metabolismo , Proteínas Fúngicas/química , Pichia/química , Xilosa/química
13.
Cell Biol Int ; 44(8): 1606-1615, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32227552

RESUMEN

Xylose is a second-most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second-generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisome-deficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose-utilizing strain of S. cerevisiae. It was shown that peroxisome-less pex3Δ mutant possessed 1.5-fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.


Asunto(s)
Fermentación , Peroxisomas/metabolismo , Saccharomyces cerevisiae/genética , Xilosa/metabolismo , Biomasa , Catalasa/genética , Etanol/metabolismo , Eliminación de Gen , Ingeniería Genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biotechnol J ; 15(7): e1900492, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32196937

RESUMEN

Saccharomyces cerevisiae offers an attractive platform for synthesis of biofuels and biochemical; however, robust strains that can withstand high substrate concentration and fermentation conditions are required. To improve the yield and productivity of bioethanol, modification of glucose metabolism and cellular stress adaptation is investigated. Specifically, the role of Znf1 transcription factor in metabolic regulation of glucose is characterized. Here, Znf1 is first shown to activate key genes in glycolysis, pyruvate metabolism, and alcoholic fermentation when glucose is provided as the sole carbon source. Under conditions of high glucose (20 g L-1 ), overexpression of ZNF1 accelerated glucose consumption with only 0.67-0.80% of glucose remaining after 24 or 36 h of fermentation. Importantly, ZNF1 overexpression increases ethanol concentrations by 14-24% and achieves a maximum ethanol concentration of 76.12-88.60 g L-1 . Ethanol productivity is increased 3.17-3.69 in strains overexpressing ZNF1 compared to 2.42-3.35 and 2.94-3.50 for the znf1Δ and wild-type strains, respectively. Moreover, strains overexpressing ZNF1 also display enhanced tolerance to osmotic and weak-acid stresses, important trait in alcoholic fermentation. Overexpresssion of key transcriptional activators of genes in glycolysis and stress responses appears to be an effective strategy to improve bioethanol productivity and enhance strain robustness.


Asunto(s)
Proteínas de Unión al ADN , Etanol/metabolismo , Glucosa/metabolismo , Ingeniería Metabólica/métodos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Ácido Acético/metabolismo , Biocombustibles , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glucólisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Biotechnol J ; 15(7): e1900468, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32087089

RESUMEN

Riboflavin (vitamin B2 ) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production. Guanosine triphosphate is the immediate precursor of riboflavin synthesis. Therefore, the activation of metabolic flux toward purine nucleotide biosynthesis is a promising approach to improve riboflavin production. The phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase are the rate limiting enzymes in purine biosynthesis. Corresponding genes PRS3 and ADE4 from yeast Debaryomyces hansenii are modified to avoid feedback inhibition and cooverexpressed on the background of a previously constructed riboflavin overproducing strain of C. famata. Constructed strain accumulates twofold more riboflavin when compared to the parental strain.


Asunto(s)
Candida , Ingeniería Metabólica/métodos , Purinas/metabolismo , Riboflavina , Candida/genética , Candida/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas/genética , Riboflavina/genética , Riboflavina/metabolismo
16.
Biotechnol J ; 15(7): e1900490, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31990438

RESUMEN

Higher alcohol isobutanol is a promising liquid fuel. During alcoholic fermentation, Saccharomyces cerevisiae produces only trace amounts of isobutanol. Screening the collection of nonconventional yeasts show that Magnusiomyces magnusii accumulates 440 mg of isobutanol per L in rich YPD medium. Here, the transformation protocol for M. magnusii is adapted based on the use of the dominant markers conferring resistance to nourseothricin or zeocin; the strong constitutive promoter TEF1 is cloned and a reporter system based on LAC4 gene from Kluyveromyces lactis coding for ß-galactosidase is constructed. In order to increase isobutanol production in M. magnusii, the heterologous gene ILV2 from S. cerevisiae is expressed in M. magnusii under control of the TEF1 promoter. The best stabilized transformants produce 620 mg of isobutanol per L in YPD medium and 760 mg L-1 in the medium with 2-oxoisovalerate. This suggests that M. magnusii is a promising organism for further development of a robust isobutanol producer.


Asunto(s)
Butanoles/metabolismo , Ingeniería Metabólica/métodos , Saccharomycetales , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
17.
J Ind Microbiol Biotechnol ; 47(1): 109-132, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31637550

RESUMEN

This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.


Asunto(s)
Etanol/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Fermentación , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Xilosa/metabolismo
18.
J Biotechnol ; 304: 28-30, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31415788

RESUMEN

The possibility of using active dry microbial preparations in biotechnological processes is essential for the development of new modern industrial technologies. In this study, we show the possibility of obtaining such preparations of the genetically engineered yeast strain Ogataea (Hansenula) polymorpha with glutathione overproduction. Special pre-treatment involving the gradual rehydration of dry cells in water vapour led to the restoration/reactivation of almost 100% of dehydrated cells. Furthermore, dry cells do not lose their viability during storage at room temperatures. Application of dry cells as the inoculum provides the same levels of glutathione synthesis as that of a native yeast culture.


Asunto(s)
Glutatión Sintasa/genética , Glutatión/biosíntesis , Saccharomycetales/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Desecación , Fluidoterapia , Ingeniería Genética , Glutatión Sintasa/metabolismo , Viabilidad Microbiana , Saccharomycetales/genética , Saccharomycetales/metabolismo
19.
Biotechnol Biofuels ; 11: 197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034524

RESUMEN

BACKGROUND: Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. RESULTS: Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. CONCLUSIONS: Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.

20.
FEMS Yeast Res ; 18(2)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29438555

RESUMEN

Lignocellulosic biomass belongs to main sustainable renewable sources for global energy supply. One of the main challenges in the conversion of saccharified lignocellulosic biomass into bioethanol is the utilization of xylose, since lignocellulosic feedstocks contain a significant amount of this pentose. The non-conventional thermotolerant yeast Ogataea polymorpha naturally ferments xylose to ethanol at elevated temperatures (45°C). Studying the molecular mechanisms of regulation of xylose metabolism is a promising way toward increased xylose conversion to ethanol. Insertional mutagenesis was applied to yeast O. polymorpha to identify genes involved in regulation of xylose fermentation. An insertional mutant selected as 3-bromopyruvate resistant strain possessed 50% increase in ethanol production as compared to the parental strain. Increase in ethanol production was caused by disruption of an autophagy-related gene ATG13. Involvement of Atg13 in regulation of xylose fermentation was confirmed by deletion of that gene. The atg13Δ strain also produced an elevated amount of ethanol from xylose. Insertion in ATG13 gene did not disrupt HORMA domain and did not lead to defects in autophagy whereas knock out of this gene impaired autophagy process. We suggest that Atg13 plays two different functions and its role in regulation of xylose fermentation differs from that in autophagy.


Asunto(s)
Ascomicetos/fisiología , Proteínas Relacionadas con la Autofagia/genética , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Xilosa/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Orden Génico , Vectores Genéticos/genética , Ingeniería Metabólica , Mutación , Pichia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...