Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114256, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38795343

RESUMEN

The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.

2.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36976648

RESUMEN

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Asunto(s)
Ceramidas , Esfingolípidos , Humanos , Ceramidas/metabolismo , Homeostasis , Mutación , Esfingolípidos/genética , Esfingolípidos/metabolismo
3.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36602539

RESUMEN

Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Drosophila , Animales , Femenino , Drosophila/metabolismo , Proteínas CCN de Señalización Intercelular/química , Proteínas CCN de Señalización Intercelular/metabolismo , Transmisión Sináptica/genética , Fertilidad/genética , Fibrinógeno
4.
Nat Commun ; 13(1): 5049, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030267

RESUMEN

Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson's and late onset Alzheimer's disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Tauopatías , Animales , Axones , Modelos Animales de Enfermedad , Drosophila , Humanos , Procesamiento Proteico-Postraduccional , Proteínas tau
5.
Elife ; 112022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801638

RESUMEN

Establishing with precision the quantity and identity of the cell types of the brain is a prerequisite for a detailed compendium of gene and protein expression in the central nervous system (CNS). Currently, however, strict quantitation of cell numbers has been achieved only for the nervous system of Caenorhabditis elegans. Here, we describe the development of a synergistic pipeline of molecular genetic, imaging, and computational technologies designed to allow high-throughput, precise quantitation with cellular resolution of reporters of gene expression in intact whole tissues with complex cellular constitutions such as the brain. We have deployed the approach to determine with exactitude the number of functional neurons and glia in the entire intact larval Drosophila CNS, revealing fewer neurons and more glial cells than previously predicted. We also discover an unexpected divergence between the sexes at this juvenile developmental stage, with the female CNS having significantly more neurons than that of males. Topological analysis of our data establishes that this sexual dimorphism extends to deeper features of CNS organisation. We additionally extended our analysis to quantitate the expression of voltage-gated potassium channel family genes throughout the CNS and uncover substantial differences in abundance. Our methodology enables robust and accurate quantification of the number and positioning of cells within intact organs, facilitating sophisticated analysis of cellular identity, diversity, and gene expression characteristics.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Caenorhabditis elegans , Sistema Nervioso Central/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Neuroglía , Caracteres Sexuales
6.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100385

RESUMEN

Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.


Asunto(s)
Drosophila , Vesículas Sinápticas , Animales , Sistema Nervioso Central/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
7.
Nat Commun ; 12(1): 4399, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285221

RESUMEN

The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Potenciales Evocados Motores/fisiología , Masculino , Microscopía Electrónica , Modelos Animales , Neuronas Motoras/ultraestructura , Músculos/inervación , Músculos/fisiología , Músculos/ultraestructura , Terminales Presinápticos/ultraestructura , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 111(33): 12228-33, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25071212

RESUMEN

L-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. L-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, L-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of L-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of L-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived L-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of L-lactate as a signaling molecule for neuronal plasticity.


Asunto(s)
Expresión Génica/efectos de los fármacos , Ácido Láctico/farmacología , N-Metilaspartato/metabolismo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Células Cultivadas , Ratones
9.
Proc Natl Acad Sci U S A ; 106(18): 7642-7, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19372380

RESUMEN

Granulocytes generate a "respiratory burst" of NADPH oxidase-dependent superoxide anion (O(2)(-*)) production that is required for efficient clearance of bacterial pathogens. Hv1 mediates a voltage-gated H(+) channel activity that is proposed to serve a charge-balancing role in granulocytic phagocytes such as neutrophils and eosinophils. Using mice in which the gene encoding Hv1 is replaced by beta-Geo reporter protein sequence, we show that Hv1 expression is required for measurable voltage-gated H(+) current in unstimulated phagocytes. O(2)(-*) production is substantially reduced in the absence of Hv1, suggesting that Hv1 contributes a majority of the charge compensation required for optimal NADPH oxidase activity. Despite significant reduction in superoxide production, Hv1(-/-) mice are able to clear several types of bacterial infections.


Asunto(s)
Granulocitos/metabolismo , Canales Iónicos/fisiología , NADPH Oxidasas/metabolismo , Fagocitos/metabolismo , Estallido Respiratorio , Superóxidos/metabolismo , Animales , Células HL-60 , Humanos , Canales Iónicos/genética , Ratones , Ratones Noqueados , Estallido Respiratorio/genética
10.
J Neurobiol ; 58(1): 60-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14598370

RESUMEN

The related proteins SCG10 and stathmin are highly expressed in the developing nervous system. Recently it was discovered that they are potent microtubule destabilizing factors. While stathmin is expressed in a variety of cell types and shows a cytosolic distribution, SCG10 is neuron-specific and membrane-associated. It contains an N-terminal targeting sequence that mediates its transport to the growing tips of axons and dendrites. SCG10 accumulates in the central domain of the growth cone, a region that also contains highly dynamic microtubules. These dynamic microtubules are known to be important for growth cone advance and responses to guidance cues. Because overexpression of SCG10 strongly enhances neurite outgrowth, SCG10 appears to be an important factor for the dynamic assembly and disassembly of growth cone microtubules during axonal elongation. Phosphorylation negatively regulates the microtubule destabilizing activity of SCG10 and stathmin, suggesting that these proteins may link extracellular signals to the rearrangement of the neuronal cytoskeleton. A role for these proteins in axonal elongation is also supported by their growth-associated expression pattern in nervous system development as well as during neuronal regeneration.


Asunto(s)
Proteínas de Microtúbulos , Microtúbulos/fisiología , Factores de Crecimiento Nervioso/fisiología , Neuritas/fisiología , Fosfoproteínas/fisiología , Animales , Estatmina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...