Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 6(14): 11979-93, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26221650

RESUMEN

Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.


Asunto(s)
Envejecimiento/fisiología , Cardiomiopatías/patología , Inflamación/fisiopatología , Mitocondrias/patología , Sistema Renina-Angiotensina/fisiología , Animales , Western Blotting , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Fenotipo
2.
PLoS One ; 8(7): e67513, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844019

RESUMEN

In the heart, lysine acetylation has been implicated in processes ranging from transcriptional control of pathological remodeling, to cardioprotection arising from caloric restriction. Given the emerging importance of this post-translational modification, we used a proteomic approach to investigate the broader role of lysine acetylation in the heart using a guinea pig model. Briefly, hearts were fractionated into myofilament-, mitochondrial- and cytosol-enriched fractions prior to proteolysis and affinity-enrichment of acetylated peptides. LC-MS/MS analysis identified 1075 acetylated peptides, harboring 994 acetylation sites that map to 240 proteins with a global protein false discovery rate <0.8%. Mitochondrial targets account for 59% of identified proteins and 64% of sites. The majority of the acetyl-proteins are enzymes involved in fatty acid metabolism, oxidative phosphorylation or the TCA cycle. Within the cytosolic fraction, the enzymes of glycolysis, fatty acid synthesis and lipid binding are prominent. Nuclear targets included histones and the transcriptional regulators E1A(p300) and CREB binding protein. Comparison of our dataset with three previous global acetylomic studies uniquely revealed 53 lysine-acetylated proteins. Specifically, newly-identified acetyl-proteins include Ca(2+)-handling proteins, RyR2 and SERCA2, and the myofilament proteins, myosin heavy chain, myosin light chains and subunits of the Troponin complex, among others. These observations were confirmed by anti-acetyl-lysine immunoblotting. In summary, cardiac lysine acetylation may play a role in cardiac substrate selection, bioenergetic performance, and maintenance of redox balance. New sites suggest a host of potential mechanisms by which excitation-contraction coupling may also be modulated.


Asunto(s)
Lisina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Acetilación , Animales , Fraccionamiento Celular , Cromatografía Liquida , Ciclo del Ácido Cítrico/genética , Ácidos Grasos/metabolismo , Expresión Génica , Glucólisis/genética , Cobayas , Masculino , Mitocondrias/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Anotación de Secuencia Molecular , Miocardio/citología , Miocitos Cardíacos/citología , Fosforilación Oxidativa , Proteoma/genética , Proteoma/aislamiento & purificación , Espectrometría de Masas en Tándem
3.
Circ Res ; 111(4): 446-54, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22811560

RESUMEN

RATIONALE: Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. OBJECTIVE: To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). METHODS AND RESULTS: Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase ß. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. CONCLUSIONS: The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Venenos de Abeja/farmacología , Células CHO , Bovinos , Cricetinae , Cricetulus , Citoprotección , Diazóxido/farmacología , Regulación de la Expresión Génica , Humanos , Espectrometría de Masas , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Membranas Mitocondriales/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Necrosis , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Proteómica/métodos , Interferencia de ARN , ARN Mensajero/metabolismo , Ratas , Talio/metabolismo , Factores de Tiempo , Transfección
4.
Proc Natl Acad Sci U S A ; 108(36): 14849-54, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21852574

RESUMEN

The renin-angiotensin (Ang) system regulates multiple physiological functions through Ang II type 1 and type 2 receptors. Prior studies suggest an intracellular pool of Ang II that may be released in an autocrine manner upon stretch to activate surface membrane Ang receptors. Alternatively, an intracellular renin-Ang system has been proposed, with a primary focus on nuclear Ang receptors. A mitochondrial Ang system has not been previously described. Here we report that functional Ang II type 2 receptors are present on mitochondrial inner membranes and are colocalized with endogenous Ang. We demonstrate that activation of the mitochondrial Ang system is coupled to mitochondrial nitric oxide production and can modulate respiration. In addition, we present evidence of age-related changes in mitochondrial Ang receptor expression, i.e., increased mitochondrial Ang II type 1 receptor and decreased type 2 receptor density that is reversed by chronic treatment with the Ang II type 1 receptor blocker losartan. The presence of a functional Ang system in human mitochondria provides a foundation for understanding the interaction between mitochondria and chronic disease states and reveals potential therapeutic targets for optimizing mitochondrial function and decreasing chronic disease burden with aging.


Asunto(s)
Riñón/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Línea Celular , Enfermedad Crónica , Humanos , Losartán/farmacología , Ratones , Óxido Nítrico/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos
5.
Circ Res ; 109(7): 750-7, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21817160

RESUMEN

RATIONALE: Cardiac resynchronization therapy (CRT) is an effective clinical treatment for heart failure patients with conduction delay, impaired contraction, and energetics. Our recent studies have revealed that mitochondrial posttranslational modifications (PTM) may contribute to its benefits, motivating the present study of the oxidative regulation of mitochondrial ATP synthase. OBJECTIVES: We tested whether CRT alteration of ATP synthase function is linked to cysteine (Cys) oxidative PTM (Ox-PTM) of specific ATP synthase subunits. METHODS AND RESULTS: Canine left ventricular myocardium was collected under conditions to preserve Ox-PTM from control, dyssynchronous heart failure (DHF), or hearts that had undergone CRT. In-gel ATPase activity showed that CRT increased ATPase activity by approximately 2-fold (P<0.05) over DHF, approaching control levels, and this effect was recapitulated with a reducing agent. ATP synthase function and 3 Ox-PTM: disulfide bond, S-glutathionylation and S-nitrosation were assessed. ATP synthase from DHF hearts contained 2 novel disulfide bonds, between ATP synthase α subunits themselves and between α and γ subunits, both of which were decreased in CRT hearts (4.38 ± 0.13- and 4.23 ± 0.36-fold, respectively, P<0.01). S-glutathionylation of ATP synthase α subunit occurred in DHF hearts and was decreased by CRT (1.56 ± 0.16-fold, P<0.04). In contrast, S-nitrosation of ATP synthase α subunit in DHF hearts was lower than in CRT hearts (1.53 ± 0.19-fold, P<0.05). All modifications occurred at ATP synthase α subunit Cys294 and Cys to Ser mutation indicated that this residue is critical for ATP synthase function. CONCLUSIONS: A selective Cys in ATP synthase α subunit is targeted by multiple Ox-PTM suggesting that this Cys residue may act as a redox sensor modulating ATP synthase function.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca/terapia , Mitocondrias Cardíacas/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocardio/enzimología , Procesamiento Proteico-Postraduccional , Animales , Cisteína , Modelos Animales de Enfermedad , Disulfuros/metabolismo , Perros , Glutatión/metabolismo , Células HEK293 , Insuficiencia Cardíaca/enzimología , Humanos , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Nitrosación , Oxidación-Reducción , Factores de Acoplamiento de la Fosforilación Oxidativa/metabolismo , Interferencia de ARN , Transfección
6.
PLoS One ; 6(4): e18497, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21541028

RESUMEN

Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.


Asunto(s)
Envejecimiento/metabolismo , Drosophila melanogaster/metabolismo , Miocardio/metabolismo , Proteoma/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Humanos , Espectrometría de Masas , Ratones , Anotación de Secuencia Molecular , Miocardio/citología , Miocardio/ultraestructura , Péptidos/metabolismo , Especificidad de la Especie
7.
Biochem Biophys Res Commun ; 366(3): 649-56, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18068667

RESUMEN

The subunit composition of the mitochondrial ATP-sensitive K(+)-channel (mitoK(ATP)) is unknown, though some suspect a role for the inward rectifier, Kir6.1, based largely on antibody studies of heart mitochondria. To ascertain the molecular identity of mitoK(ATP) we therefore sought to purify this putative mitochondrial Kir6.1, and conclusively identify the subunits by mass spectrometry. Immunoblots, conducted with two commercially available antibodies, revealed two distinct signals in isolated heart mitochondria, of 51 and 48kDa, respectively. Localization was confirmed by either immuno-gold electron microscopy or by immunofluorescence. Each putative Kir6.1 species was extracted, purified, and identified by LC-MS/MS. The 51kDa band was identified as NADH-dehydrogenase flavoprotein 1, while the preponderant protein in the 48-kDa band was mitochondrial isocitrate dehydrogenase (NADP form). 1D-, 2D-, and native gel analyses were consistent with these assignments. The data suggest it is premature to assign Kir6.1 a role in mitoK(ATP) on the basis of immunoreactivity alone.


Asunto(s)
Mitocondrias Cardíacas/química , Mitocondrias Cardíacas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Canales KATP , Datos de Secuencia Molecular , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA