Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Stress ; 2(8): 184-199, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31225486

RESUMEN

Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.

2.
Nat Commun ; 8(1): 1237, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093463

RESUMEN

The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex's membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step-motor module formation.


Asunto(s)
Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Protones , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae
3.
Nat Commun ; 8: 14635, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281558

RESUMEN

The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation.


Asunto(s)
Transferasas Alquil y Aril/química , Fibroblastos/metabolismo , Proteínas de la Membrana/química , Peroxisomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Fibroblastos/patología , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Peroxisomas/patología , Prenilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Síndrome de Zellweger/patología
4.
Traffic ; 13(7): 947-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486971

RESUMEN

During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with the cargo-binding domain of Myo2p. We identified mutations in Myo2p that specifically reduced binding to Pex19p, but not to Inp2p. The interaction between Myo2p and Pex19p was also reduced by a mutation that blocked Pex19p farnesylation. Microscopy revealed that the Pex19p-Myo2p interaction is important for peroxisome inheritance, because mutations that affect this interaction hamper peroxisome inheritance in vivo. Together these data suggest that both Inp2p and Pex19p are required for proper association of peroxisomes to Myo2p.


Asunto(s)
Proteínas de la Membrana/fisiología , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Peroxisomas/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , División Celular , Proteínas de la Membrana/metabolismo , Mutación , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Peroxisomas/genética , Prenilación , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Biochim Biophys Acta ; 1808(3): 892-900, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20659419

RESUMEN

Peroxisomes are a class of structurally and functionally related organelles present in almost all eukaryotic cells. The importance of peroxisomes for human life is highlighted by severe inherited diseases which are caused by defects of peroxins, encoded by PEX genes. To date 32 peroxins are known to be involved in different aspects of peroxisome biogenesis. This review addresses two of these aspects, the translocation of soluble proteins into the peroxisomal matrix and the biogenesis of the peroxisomal membrane. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Humanos , Transporte de Proteínas
6.
Eur J Cell Biol ; 89(12): 947-54, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20655617

RESUMEN

Peroxisomes can form either by growth and division of pre-existing peroxisomes or by de novo synthesis from the endoplasmic reticulum. Pex3p is the key component for both pathways and its targeting to the ER is thought to initiate the de novo formation of peroxisomes. Here, we addressed the question whether Pex3p also can induce peroxisome formation from mitochondrial membranes. Pex3p was targeted to mitochondria by fusion with the mitochondrial targeting signal of Tom20p. The Tom20p-Pex3p-fusion protein was expressed in Pex3p-deficient cells, which are characterized by the lack of peroxisomal membranes. De novo formation of import-competent peroxisomes was observed upon expression of the mitochondrial Pex3p in the mutant cells. This de novo synthesis is independent of the GTPases Vps1p and Dnm1p, two proteins required for peroxisome fission. We conclude that natural or artificial targeting of Pex3p to any endomembrane may initiate peroxisome formation and that also Pex3p-containing mitochondria can serve as source for the de novo synthesis of peroxisomes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía Electrónica de Transmisión , Peroxinas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
7.
J Biol Chem ; 284(31): 20885-96, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19451657

RESUMEN

The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Prenilación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Dicroismo Circular , Farnesiltransferasa/metabolismo , Mutación/genética , Peroxinas , Unión Proteica , Señales de Clasificación de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
8.
J Biol Chem ; 284(6): 3906-16, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19017643

RESUMEN

Pex3p is a central component of the import machinery for peroxisomal membrane proteins (PMPs) that can reach peroxisomes via the endoplasmic reticulum (ER) and even trigger de novo peroxisome formation from the ER. Pex19p is the import receptor for type I PMPs, whereas targeting of type II PMPs, of which Pex3p so far represents the only species, does not require Pex19p. Pex3p possesses two domains with distinct function: a short N-terminal domain, which harbors the information for peroxisomal (and ER) targeting, and a C-terminal domain, which faces the cytosol and serves as a docking site for Pex19p, thereby delivering newly synthesized PMPs to the peroxisome. Here we show that the N-terminal domain of Pex3p can be functionally replaced by the N-terminal peroxisomal membrane targeting signal (mPTS) of Pex22p, a supposedly unrelated component of the import machinery for peroxisomal matrix proteins. An exchange of the mPTS of Pex22p by that of Pex3p likewise fully preserved the function of Pex22p. Neither of the two mPTS interacted with Pex19p, and in the absence of Pex19p, colocalization of Pex3p and Pex22p was observed, indicating that also Pex22p is targeted to peroxisomes by a type II mPTS. When a type I mPTS was hooked to the C-terminal domains of Pex22p and Pex3p, function was retained in the case of Pex22p and in part even for Pex3p. The C-terminal domain of Pex3p thus contains the relevant information required for de novo peroxisome formation, thereby challenging the concept of the N terminus of Pex3p being key in that process.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Peroxinas , Peroxisomas/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...