Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908712

RESUMEN

High quality raw milk is an important prerequisite for the production of long ripened raw milk cheeses. This implies not only the absence of pathogenic microorganisms in raw milk, but also low levels of spoilage bacteria, including dairy propionic acid bacteria (dPAB), that can cause blowing and sensory defects in cheese, resulting in severe economic losses for producers. Raw milk contamination with dPAB has been primarily associated with improperly cleaned milking systems, but they have been detected in feed, soil, feces and on the teat skin. The objective of this study was to identify potential sources of raw milk contamination with dPAB in the barn and milking parlor environments. We also wanted to know more about the prevalence of the dPAB species in these environments and the levels of contamination. For this purpose, 16 small scale Alpine dairy farms were visited in August 2022: samples were taken from the barn environment (e.g., swab samples, air, feed, bedding), the milking system (swab samples, residual cleaning water, cleaning sponges, milk filters) and milk samples were collected at various sampling points along the milking system. Samples were analyzed for dPAB contamination, and results showed contamination at multiple sampling locations. We observed potential adverse effects of improperly set cleaning parameters of the milking system, as well as of farm specific practices. In addition, we identified cleaning water residues as an important source of contamination. Based on these findings, we propose potential mitigation strategies to reduce the risk of raw milk contamination with cheese spoilage bacteria, thereby contributing to a more sustainable food production.

2.
Foods ; 13(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38672865

RESUMEN

Enumeration of endospores of butyric acid-forming clostridia in cheese milk is an essential part of milk quality monitoring for cheese producers to avoid late blowing, severe spoilage caused by clostridia during ripening. However, due to the lack of an internationally standardized method, different methods are used and it is important to consider how the choice of method affects the results. This is particularly relevant when clostridial spore counts in milk are considered for quality payments. The aim of this study was to evaluate the specificity of the AMP-6000 method for the enumeration of endospores of cheese spoiling clostridia in milk. First, to assess the prevalence of Clostridium diversity and to determine potential non-target species, we identified isolates from positive reactions of the AMP-6000 method used to quantify clostridial endospores in raw milk and teat skin samples by MALDI-TOF MS. Based on these results, a strain library was designed to evaluate method inclusivity and exclusivity using pure cultures of target and non-target strains according to ISO 16140-2:2016. Most target Clostridium tyrobutyricum strains, as well as all tested C. butyricum and C. sporogenes strains were inclusive. However, C. beijerinckii may be underestimated as only some strains gave positive results. All non-target strains of bacilli and lysinibacilli, but not all paenibacilli, were confirmed to be exclusive. This study provides performance data to better understand the results of microbiological enumeration of butyric acid-forming clostridia in milk and serves as a basis for future methodological considerations and improvements.

3.
Microorganisms ; 11(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37317311

RESUMEN

Butyric acid producing clostridia (BAPC) cause the so-called late-blowing defect, a serious quality problem in semi-hard and hard cheeses. Late-blown cheeses are characterized by undesired slits and cracks, irregular eyes, and off-flavors due to excessive amounts of gas and organic acids produced by clostridia. Clostridial transfer to raw milk can occur during milking through dirty teats. Therefore, teat cleaning before milking is a key factor in preventing clostridial contamination of the milk. However, different cleaning methods are used, and little information is available on the efficacy of routine teat cleaning in reducing clostridial endospores. The main objectives of this study were to assess the extent of udder contamination with BAPC spores and to investigate the efficacy of routine teat cleaning on BAPC spore counts in milk. In a longitudinal study, eight dairy farms were visited during five sampling events. Clostridial spore counts were quantified from teat skin before and after routine teat cleaning, in pooled quarter milk samples from individual cows, and in bulk tank milk samples using a most probable number method. In addition, farm management data were collected periodically through a survey, and average cow cleanliness was assessed by a veterinarian. On average, teat cleaning resulted in a 0.6 log unit reduction in BAPC spores on teat skin, and a strong positive correlation was found between BAPC spore concentrations on teat skin after cleaning and in pooled quarter milk samples. Seasonal variations and the potential influence of differences in farm management were also noted. Interestingly, average cow cleanliness correlated strongly with BAPC spore levels in milk, suggesting the potential for a quick and rough estimation method of clostridial contamination that could be implemented by farmers.

4.
Geomicrobiol J ; 33(3-4): 308-317, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27019541

RESUMEN

A collection of 163 strains of black yeast-like fungi from the CBS Fungal Biodiversity Center (Utrecht, The Netherlands), has been screened for the ability to grow on hexadecane, toluene and polychlorinated biphenyl 126 (PCB126) as the sole carbon and energy source. These compounds were chosen as representatives of relevant environmental pollutants. A microtiter plate-based culture assay was set up in order to screen the fungal strains for growth on the selected xenobiotics versus glucose, as a positive control. Growth was observed in 25 strains on at least two of the tested substrates. Confirmation of substrate assimilation was performed by cultivation on closed vials and analysis of the headspace composition with regard to the added volatile substrates and the generated carbon dioxide. Exophiala mesophila (CBS 120910) and Cladophialophora immunda (CBS 110551), both of the order Chaetothyriales and isolated from a patient with chronic sinusitis and a polluted soil sample, respectively, showed the ability to grow on toluene as the sole carbon and energy source. Toluene assimilation has previously been described for C. immunda but this is the first account for E. mesophila. Also, this is the first time that the capacity to grow on alkylbenzenes has been demonstrated for a clinical isolate. Assimilation of toluene could not be demonstrated for the human opportunistic pathogen Pseudoallescheria boydii (CBS 115.59, Microascales), but the results from microtiter plate assays suggest that strains of this species are promising candidates for further studies. The outstanding abilities of black yeast-like fungi to thrive in extreme environments makes them ideal agents for the bioremediation of polluted soils, and for the treatment of contaminated gas streams in biofilters. However, interrelations between hydrocarbonoclastic and potentially pathogenic strains need to be elucidated in order to avoid the possibility of biohazards occurring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA