Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 24(10): 1220-1237, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306534

RESUMEN

The lifecycle of Zymoseptoria tritici requires a carefully regulated asymptomatic phase within the wheat leaf following penetration of the mesophyll via stomata. Here we compare the roles in this process of two key fungal signalling pathways, mutants of which were identified through forward genetics due to their avirulence on wheat. Whole-genome resequencing of avirulent Z. tritici T-DNA transformants identified disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity (CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these genes abolished the pathogenicity of the fungus and led to similar in vitro phenotypes to those associated with disruption of putative downstream kinases, both supporting previous studies and confirming the importance of these pathways in virulence. RNA sequencing was used to investigate the effect of ZtBCK1 and ZtCYR1 deletion on gene expression in both the pathogen and host during infection. ZtBCK1 was found to be required for the adaptation to the host environment, controlling expression of infection-associated secreted proteins, including known virulence factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy, regulating expression of effectors associated with this transition. This represents the first study to compare the influence of CWI and cAMP signalling on in planta transcription of a fungal plant pathogen, providing insights into their differential regulation of candidate effectors during invasive growth.


Asunto(s)
Genes Fúngicos , Enfermedades de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética , Factores de Virulencia , Triticum/genética , Triticum/microbiología
2.
Front Plant Sci ; 14: 1140824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206970

RESUMEN

"Mutagenomics" is the combination of random mutagenesis, phenotypic screening, and whole-genome re-sequencing to uncover all tagged and untagged mutations linked with phenotypic changes in an organism. In this study, we performed a mutagenomics screen on the wheat pathogenic fungus Zymoseptoria tritici for altered morphogenetic switching and stress sensitivity phenotypes using Agrobacterium-mediated "random" T-DNA mutagenesis (ATMT). Biological screening identified four mutants which were strongly reduced in virulence on wheat. Whole genome re-sequencing defined the positions of the T-DNA insertion events and revealed several unlinked mutations potentially affecting gene functions. Remarkably, two independent reduced virulence mutant strains, with similarly altered stress sensitivities and aberrant hyphal growth phenotypes, were found to have a distinct loss of function mutations in the ZtSSK2 MAPKKK gene. One mutant strain had a direct T-DNA insertion affecting the predicted protein's N-terminus, while the other possessed an unlinked frameshift mutation towards the C-terminus. We used genetic complementation to restore both strains' wild-type (WT) function (virulence, morphogenesis, and stress response). We demonstrated that ZtSSK2 has a non-redundant function with ZtSTE11 in virulence through the biochemical activation of the stress-activated HOG1 MAPK pathway. Moreover, we present data suggesting that SSK2 has a unique role in activating this pathway in response to specific stresses. Finally, dual RNAseq-based transcriptome profiling of WT and SSK2 mutant strains revealed many HOG1-dependent transcriptional changes in the fungus during early infection and suggested that the host response does not discriminate between WT and mutant strains during this early phase. Together these data define new genes implicated in the virulence of the pathogen and emphasise the importance of a whole genome sequencing step in mutagenomic discovery pipelines.

4.
Sci Rep ; 12(1): 17880, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284131

RESUMEN

Cell death processes in eukaryotes shape normal development and responses to the environment. For plant-microbe interactions, initiation of host cell death plays an important role in determining disease outcomes. Cell death pathways are frequently initiated following detection of pathogen-derived molecules which can lead to resistance or susceptibility to disease depending on pathogen lifestyle. We previously identified several small secreted proteins (SSPs) from the wheat-infecting fungus Zymoseptoria tritici that induce rapid cell death in Nicotiana benthamiana following Agrobacterium-mediated delivery and expression (agroinfiltration). Here we investigated whether the execution of host cells was mechanistically similar in response to different Z. tritici SSPs. Using RNA sequencing, we found that transient expression of four Z. tritici SSPs led to massive transcriptional reprogramming within 48 h of agroinfiltration. We observed that distinct host gene expression profiles were induced dependent on whether cell death occurs in a cell surface immune receptor-dependent or -independent manner. These gene expression profiles involved differential transcriptional networks mediated by WRKY, NAC and MYB transcription factors. In addition, differential expression of genes belonging to different classes of receptor-like proteins and receptor-like kinases was observed. These data suggest that different Z. tritici SSPs trigger differential transcriptional reprogramming in plant cells.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Células Vegetales , Hojas de la Planta/microbiología , Ascomicetos/genética , Muerte Celular , Factores de Transcripción/metabolismo
5.
Fungal Genet Biol ; 163: 103748, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36309095

RESUMEN

The fungal wheat pathogen Zymoseptoria tritici causes major crop losses as the causal agent of the disease Septoria tritici blotch. The infection cycle of Z. tritici displays two distinct phases, beginning with an extended symptomless phase of 1-2 weeks, before the fungus induces host cell death and tissue collapse in the leaf. Recent evidence suggests that the fungus uses little host-derived nutrition during asymptomatic colonisation, raising questions as to the sources of energy required for this initial growth phase. Autophagy is crucial for the pathogenicity of other fungal plant pathogens through its roles in supporting cellular differentiation and growth under starvation. Here we characterised the contributions of the autophagy genes ZtATG1 and ZtATG8 to the development and virulence of Z. tritici. Deletion of ZtATG1 led to inhibition of autophagy but had no impact on starvation-induced hyphal differentiation or virulence, suggesting that autophagy is not required for Z. tritici pathogenicity. Contrastingly, ZtATG8 deletion delayed the transition to necrotrophic growth, despite having no influence on filamentous growth under starvation, pointing to an autophagy-independent role of ZtATG8 during Z. tritici infection. To our knowledge, this study represents the first to find autophagy not to contribute to the virulence of a fungal plant pathogen, and reveals novel roles for different autophagy-associated proteins in Z. tritici.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Virulencia/genética , Enfermedades de las Plantas/microbiología , Autofagia/genética
6.
Front Plant Sci ; 13: 1070986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699841

RESUMEN

Introduction: Septoria tritici blotch (STB) is one of the most damaging fungal diseases of wheat in Europe, largely due to the paucity of effective resistance genes against it in breeding materials. Currently dominant protection methods against this disease, e.g. fungicides and the disease resistance genes already deployed, are losing their effectiveness. Therefore, it is vital that other available disease resistance sources are identified, understood and deployed in a manner that maximises their effectiveness and durability. Methods: In this study, we assessed wheat genotypes containing nineteen known major STB resistance genes (Stb1 through to Stb19) or combinations thereof against a broad panel of 93 UK Zymoseptoria tritici isolates. Seedlings were inoculated using a cotton swab and monitored for four weeks. Four infection-related phenotypic traits were visually assessed. These were the days post infection to the development of first symptoms and pycnidia, percentage coverage of the infected leaf area with chlorosis/necrosis and percentage coverage of the infected leaf area with pycnidia. Results: The different Stb genes were found to vary greatly in the levels of protection they provided, with pycnidia coverage at four weeks differing significantly from susceptible controls for every tested genotype. Stb10, Stb11, Stb12, Stb16q, Stb17, and Stb19 were identified as contributing broad spectrum disease resistance, and synthetic hexaploid wheat lines were identified as particularly promising sources of broadly effective STB resistances. Discussion: No single Z. tritici isolate was found to be virulent against all tested resistance genes. Wheat genotypes carrying multiple Stb genes were found to provide higher levels of resistance than expected given their historical levels of use. Furthermore, it was noted that disease resistance controlled by different Stb genes was associated with different levels of chlorosis, with high levels of early chlorosis in some genotypes correlated with high resistance to fungal pycnidia development, potentially suggesting the presence of multiple resistance mechanisms.The knowledge obtained here will aid UK breeders in prioritising Stb genes for future breeding programmes, in which optimal combinations of resistance genes could be pyramided. In addition, this study identified the most interesting Stb genes for cloning and detailed functional analysis.

7.
Mol Plant Pathol ; 22(6): 683-693, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33797163

RESUMEN

Chitin is a major structural component of fungal cell walls and acts as a microbe-associated molecular pattern (MAMP) that, on recognition by a plant host, triggers the activation of immune responses. To avoid the activation of these responses, the Septoria tritici blotch (STB) pathogen of wheat, Zymoseptoria tritici, secretes LysM effector proteins. Previously, the LysM effectors Mg1LysM and Mg3LysM were shown to protect fungal hyphae against host chitinases. Furthermore, Mg3LysM, but not Mg1LysM, was shown to suppress chitin-induced reactive oxygen species (ROS) production. Whereas initially a third LysM effector gene was disregarded as a presumed pseudogene, we now provide functional data to show that this gene also encodes a LysM effector, named Mgx1LysM, that is functional during wheat colonization. While Mg3LysM confers a major contribution to Z. tritici virulence, Mgx1LysM and Mg1LysM contribute to Z. tritici virulence with smaller effects. All three LysM effectors display partial functional redundancy. We furthermore demonstrate that Mgx1LysM binds chitin, suppresses the chitin-induced ROS burst, and is able to protect fungal hyphae against chitinase hydrolysis. Finally, we demonstrate that Mgx1LysM is able to undergo chitin-induced polymerization. Collectively, our data show that Z. tritici utilizes three LysM effectors to disarm chitin-triggered wheat immunity.


Asunto(s)
Ascomicetos/fisiología , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Triticum/microbiología , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Triticum/inmunología , Virulencia
9.
Front Plant Sci ; 10: 892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333714

RESUMEN

Cross-kingdom small RNA (sRNA) silencing has recently emerged as a mechanism facilitating fungal colonization and disease development. Here we characterized RNAi pathways in Zymoseptoria tritici, a major fungal pathogen of wheat, and assessed their contribution to pathogenesis. Computational analysis of fungal sRNA and host mRNA sequencing datasets was used to define the global sRNA populations in Z. tritici and predict their mRNA targets in wheat. 389 in planta-induced sRNA loci were identified. sRNAs generated from some of these loci were predicted to target wheat mRNAs including those potentially involved in pathogen defense. However, molecular approaches failed to validate targeting of selected wheat mRNAs by fungal sRNAs. Mutant strains of Z. tritici carrying deletions of genes encoding key components of RNAi such as Dicer-like (DCL) and Argonaute (AGO) proteins were generated, and virulence bioassays suggested that these are dispensable for full infection of wheat. Nonetheless, our results did suggest the existence of non-canonical DCL-independent pathway(s) for sRNA biogenesis in Z. tritici. dsRNA targeting essential fungal genes applied in vitro or generated from an RNA virus vector in planta in a procedure known as HIGS (Host-Induced Gene Silencing) was ineffective in preventing Z. tritici growth or disease. We also demonstrated that Z. tritici is incapable of dsRNA uptake. Collectively, our data suggest that RNAi approaches for gene function analyses in this fungal species and potentially also as a control measure may not be as effective as has been demonstrated for some other plant pathogenic fungi.

10.
Curr Opin Plant Biol ; 50: 1-8, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30861483

RESUMEN

Since the original 'Zigzag model', several iterations have been proposed to reconcile both the Pattern Triggered Immunity (PTI) and the Effector Triggered Immunity (ETI) branches of the plant immune system. The recent cloning of new disease resistance genes, functioning in gene-for-gene interactions, which structurally resemble cell surface broad spectrum Pattern Recognition Receptors, have further blurred the distinctions between PTI and ETI in plant immunity. In an attempt to simplify further the existing conceptual models, we, herein, propose a scheme based on the spatial localization of the key proteins (receptors) which function to induce plant immune responses. We believe this 'Spatial Invasion model' will prove useful for understanding how immune receptors interact with different pathogen types which peripherally or totally invade plant cells, colonize solely extracellularly or switch locations during a successful infection.


Asunto(s)
Espacio Extracelular , Enfermedades de las Plantas , Resistencia a la Enfermedad , Humanos , Inmunidad de la Planta , Plantas , Receptores de Reconocimiento de Patrones
11.
Sci Rep ; 8(1): 17069, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459352

RESUMEN

Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB) disease of wheat. Z. tritici is an apoplastic fungal pathogen, which does not penetrate plant cells at any stage of infection, and has a long initial period of symptomless leaf colonisation. During this phase it is unclear to what extent the fungus can access host plant nutrients or communicate with plant cells. Several important primary and secondary metabolite pathways in fungi are regulated by the post-translational activator phosphopantetheinyl transferase (Ppt) which provides an essential co-factor for lysine biosynthesis and the activities of non-ribosomal peptide synthases (NRPS) and polyketide synthases (PKS). To investigate the relative importance of lysine biosynthesis, NRPS-based siderophore production and PKS-based DHN melanin biosynthesis, we generated deletion mutants of ZtPpt. The ∆ZtPpt strains were auxotrophic for lysine and iron, non-melanised and non-pathogenic on wheat. Deletion of the three target genes likely affected by ZtPpt loss of function (Aar- lysine; Nrps1-siderophore and Pks1- melanin), highlighted that lysine auxotrophy was the main contributing factor for loss of virulence, with no reduction caused by loss of siderophore production or melanisation. This reveals Ppt, and the lysine biosynthesis pathway, as potential targets for fungicides effective against Z. tritici.


Asunto(s)
Ascomicetos/patogenicidad , Proteínas Bacterianas/metabolismo , Lisina/biosíntesis , Melaninas/metabolismo , Enfermedades de las Plantas/microbiología , Sideróforos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Triticum/microbiología , Virulencia , Proteínas Fúngicas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Esporas Fúngicas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
12.
Nat Genet ; 50(3): 368-374, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29434355

RESUMEN

Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development 5 . Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6-8 and confers pathogen resistance without a hypersensitive response 9 . This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10-12.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Proteínas Quinasas/fisiología , Triticum/genética , Triticum/microbiología , Sustitución de Aminoácidos , Mapeo Cromosómico , Resistencia a la Enfermedad/inmunología , Genes de Plantas/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mutagénesis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Sitios de Carácter Cuantitativo/genética , Triticum/inmunología
14.
New Phytol ; 217(1): 320-331, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28895153

RESUMEN

The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored the impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino-acid N-terminal 'loop' region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells, but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggest that, although it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Ascomicetos/enzimología , Enfermedades de las Plantas/microbiología , Ribonucleasas/aislamiento & purificación , Triticum/microbiología , Antiinfecciosos/metabolismo , Ascomicetos/patogenicidad , Muerte Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Microbiota/efectos de los fármacos , Micotoxinas/genética , Micotoxinas/aislamiento & purificación , Micotoxinas/metabolismo , Hojas de la Planta/microbiología , Ribonucleasas/genética , Ribonucleasas/metabolismo
15.
PLoS Pathog ; 13(10): e1006672, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29020037

RESUMEN

Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.


Asunto(s)
Fusarium/patogenicidad , Glicosiltransferasas/metabolismo , Hifa/crecimiento & desarrollo , Triticum/microbiología , Virulencia/genética , ADN Bacteriano/genética , Regulación Fúngica de la Expresión Génica , Glicosiltransferasas/genética , Mutación , Filogenia , Enfermedades de las Plantas/microbiología , Esporas Fúngicas , Triticum/enzimología , Triticum/genética
16.
New Phytol ; 213(1): 338-350, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696417

RESUMEN

The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacterium-mediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR.


Asunto(s)
Ascomicetos/fisiología , Proteínas Fúngicas/metabolismo , Nicotiana/microbiología , Triticum/microbiología , Agrobacterium/metabolismo , Ascomicetos/citología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Luz , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Transcripción Genética
17.
BMC Genomics ; 17: 584, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27506390

RESUMEN

BACKGROUND: Ramularia collo-cygni is a newly important, foliar fungal pathogen of barley that causes the disease Ramularia leaf spot. The fungus exhibits a prolonged endophytic growth stage before switching life habit to become an aggressive, necrotrophic pathogen that causes significant losses to green leaf area and hence grain yield and quality. RESULTS: The R. collo-cygni genome was sequenced using a combination of Illumina and Roche 454 technologies. The draft assembly of 30.3 Mb contained 11,617 predicted gene models. Our phylogenomic analysis confirmed the classification of this ascomycete fungus within the family Mycosphaerellaceae, order Capnodiales of the class Dothideomycetes. A predicted secretome comprising 1053 proteins included redox-related enzymes and carbohydrate-modifying enzymes and proteases. The relative paucity of plant cell wall degrading enzyme genes may be associated with the stealth pathogenesis characteristic of plant pathogens from the Mycosphaerellaceae. A large number of genes associated with secondary metabolite production, including homologs of toxin biosynthesis genes found in other Dothideomycete plant pathogens, were identified. CONCLUSIONS: The genome sequence of R. collo-cygni provides a framework for understanding the genetic basis of pathogenesis in this important emerging pathogen. The reduced complement of carbohydrate-degrading enzyme genes is likely to reflect a strategy to avoid detection by host defences during its prolonged asymptomatic growth. Of particular interest will be the analysis of R. collo-cygni gene expression during interactions with the host barley, to understand what triggers this fungus to switch from being a benign endophyte to an aggressive necrotroph.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Genómica , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Análisis por Conglomerados , Biología Computacional/métodos , Proteínas Fúngicas , Genómica/métodos , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Hojas de la Planta/microbiología , Proteoma , Proteómica/métodos , Metabolismo Secundario , Virulencia/genética
18.
Mol Plant Pathol ; 17(6): 845-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26610174

RESUMEN

Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. The disease interaction is characterized by clearly defined temporal phases of infection, ultimately resulting in the death of host tissue. Zymoseptoria tritici is a highly polymorphic species with significant intraspecific variation in virulence profiles. We generated a deep transcriptomic sequencing dataset spanning the entire time course of an infection using a previously uncharacterized, highly virulent Z. tritici strain isolated from a Swiss wheat field. We found that seven clusters of gene transcription profiles explained the progression of the infection. The earliest highly up-regulated genes included chloroperoxidases, which may help the fungus cope with plant defences. The onset of necrotrophy was characterized by a concerted up-regulation of proteases, plant cell wall-degrading enzymes and lipases. Functions related to nutrition and growth characterized late necrotrophy and the transition to saprotrophic growth on dead plant tissue. We found that the peak up-regulation of genes essential for mating coincided with the necrotrophic phase. We performed an intraspecies comparative transcriptomics analysis using a comparable time course infection experiment of the genome reference isolate IPO323. Major components of the fungal infection transcriptome were conserved between the two strains. However, individual small, secreted proteins, proteases and cell wall-degrading enzymes showed strongly differentiated transcriptional profiles between isolates. Our analyses illustrate that successful STB infections involve complex transcriptomic remodelling to up-regulate distinct gene functions. Heterogeneity in transcriptomes among isolates may explain some of the considerable variation in virulence and host specialization found within the species.


Asunto(s)
Ascomicetos/genética , Perfilación de la Expresión Génica/métodos , Transcripción Genética , Transcriptoma/genética , Ascomicetos/patogenicidad , Pared Celular/metabolismo , Análisis por Conglomerados , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Análisis de Secuencia de ARN , Especificidad de la Especie , Factores de Tiempo , Triticum/microbiología , Regulación hacia Arriba/genética , Virulencia/genética
19.
Fungal Genet Biol ; 79: 24-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092786

RESUMEN

Zymoseptoria tritici (previously Mycosphaerella graminicola, teleomorph, Septoria tritici, anamorph) causes Septoria tritici blotch, one of the most economically important diseases of wheat (Triticum aestivum). The host pathogenic interaction, as currently understood, is intriguing, and may distinguish Z. tritici from many of the current models for plant pathogenic fungi. Many important questions remain which require a deeper understanding including; the nature and biological significance of the characteristic long latent periods of symptomless plant infection; how/why the fungus then effectively transitions from this to cause disease and reproduce? Elements of this transition currently resemble a putative "hijack" on plant defence but how is Z. tritici able to do this without any form of plant cell penetration? This commentary provides a summary of the recent history of research into the host-pathogen interaction, whilst highlighting some of the challenges going forwards, which will be faced by improved technologies and a growing research community.


Asunto(s)
Ascomicetos/fisiología , Ascomicetos/patogenicidad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Triticum/inmunología , Triticum/microbiología
20.
Fungal Genet Biol ; 79: 84-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092793

RESUMEN

Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols.


Asunto(s)
Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Técnicas de Silenciamiento del Gen/métodos , Genes de Plantas , Enfermedades de las Plantas/genética , Virus de Plantas/genética , Triticum/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/inmunología , Silenciador del Gen , Vectores Genéticos , Enfermedades de las Plantas/microbiología , Virus ARN/genética , Genética Inversa/métodos , Transformación Genética , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...