Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Total Environ ; 707: 135556, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31780150

RESUMEN

Chronic arsenic poisoning has been shown to be a risk factor for the development of intellectual disability. Numerous human and animal studies have also confirmed that low-level arsenic exposure has deleterious effects on neurotransmission and brain structures which have been further linked to neurobehavioral disorders. The aim of this present work was to comparatively assess structural brain volume changes and alteration of two (2) neurotransmitters, specifically dopamine (DA) and serotonin (5-HT) in the brains of wild muskrats and squirrels breeding in arsenic endemic areas, near the vicinity of the abandoned Giant mine site in Yellowknife and in reference locations between 52 and 105 km from the city of Yellowknife. The levels of DA and 5-HT were measured in the brain tissues, and Magnetic Resonance Imaging (MRI) was used to attempt brain volume measurements. The results revealed that the concentrations of DA and 5-HT were slightly increased in the brains of squirrels from the arsenic endemic areas compared to the reference site. Further, DA and 5-HT were slightly reduced in the brains of muskrats from the arsenic endemic areas compared to the reference location. In general, no statistically significant neurotransmission changes and differences were observed in the brain tissues of muskrats and squirrels from both arsenic endemic areas and non-endemic sites. Although MRI results showed that the brain volumes of squirrels and muskrats were not statistically different between sites after multiple comparison correction; it was noted that core brain regions were substantially affected in muskrats, in particular the hippocampal memory circuit, striatum and thalamus. Squirrel brains showed more extensive neuroanatomical changes, likely due to their relatively smaller body mass, with extensive shrinkage of the core brain structures, and the cortex, even after accounting for differences in overall brain size. The results of this present study constitute the first observation of neuroanatomical changes in wild small mammal species breeding in arsenic endemic areas of Canada.


Asunto(s)
Transmisión Sináptica , Animales , Arsénico , Arvicolinae , Biomarcadores , Cruzamiento , Neuroimagen , Territorios del Noroeste , Sciuridae
2.
AJNR Am J Neuroradiol ; 40(7): 1162-1169, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221631

RESUMEN

BACKGROUND AND PURPOSE: Our aims were the following: 1) to compare multicontrast cortical lesion detection using 3T and 7T MR imaging, 2) to compare cortical lesion type frequency in relapsing-remitting and secondary-progressive MS, and 3) to assess whether detectability is related to the magnetization transfer ratio, an imaging marker sensitive to myelin content. MATERIALS AND METHODS: Multicontrast 3T and 7T MR images from 10 participants with relapsing-remitting MS and 10 with secondary-progressive MS. We used the following 3T contrast sequences: 3D-T1-weighted, quantitative T1, FLAIR, magnetization-transfer, and 2D proton-density- and T2-weighted. We used the following 7T contrast sequences: 3D-T1-weighted, quantitative T1, and 2D-T2*-weighted. RESULTS: Cortical lesion counts at 7T were the following: 720 total cortical lesions, 420 leukocortical lesions (58%), 27 intracortical lesions (4%), and 273 subpial lesions (38%). Cortical lesion counts at 3T were the following: 424 total cortical, 393 leukocortical (93%), zero intracortical, and 31 subpial (7%) lesions. Total, intracortical, and subpial 3T lesion counts were significantly lower than the 7T counts (P < .002). Leukocortical lesion counts were not significantly different between scanners. Total and leukocortical lesion counts were significantly higher in secondary-progressive MS, at 3T and 7T (P ≤ .02). Subpial lesions were significantly higher in secondary-progressive MS at 7T (P = .006). The magnetization transfer ratio values of leukocortical lesions visible on both scanners were significantly lower than the magnetization transfer ratio values of leukocortical lesions visible only at 3T. No significant difference was found in magnetization transfer ratio values between subpial lesions visible only at 7T and subpial lesions visible on both 3T and 7T. CONCLUSIONS: Detection of leukocortical lesions at 3T is comparable with that at 7T MR imaging. Imaging at 3T is less sensitive to intracortical and subpial lesions. Leukocortical lesions not visible on 7T T2*-weighted MRI may be associated with less demyelination than those that are visible. Detectability of subpial lesions does not appear to be related to the degree of demyelination.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Encéfalo/patología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/patología
3.
AJNR Am J Neuroradiol ; 39(8): 1473-1479, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930096

RESUMEN

BACKGROUND AND PURPOSE: Recently published North American Imaging in Multiple Sclerosis guidelines call for derivation of a specific radiologic definition of MS WM lesions and mimics. The purpose of this study was to use SWI and magnetization-prepared FLAIR images for sensitive differentiation of MS from benign WM lesions using the morphologic characteristics of WM lesions. MATERIALS AND METHODS: Seventeen patients with relapsing-remitting MS and 18 healthy control subjects were enrolled retrospectively. For each subject, FLAIR and multiecho gradient-echo images were acquired using 7T MR imaging. Optimized postprocessing was used to generate single-slice SWI of cerebral veins. SWI/FLAIR images were registered, and 3 trained readers performed lesion assessment. Morphology, location of lesions, and the time required for assessment were recorded. Analyses were performed on 3 different pools: 1) lesions of >3 mm, 2) nonconfluent lesions of >3 mm, and 3) nonconfluent lesions of >3 mm with no or a single central vein. RESULTS: The SWI/FLAIR acquisition and processing protocol enabled effective assessment of central veins and hypointense rims in WM lesions. Assessment of nonconfluent lesions with ≥1 central vein enabled the most specific and sensitive differentiation of patients with MS from controls. A threshold of 67% perivenous WM lesions separated patients with MS from controls with a sensitivity of 94% and specificity of 100%. Lesion assessment took an average of 12 minutes 10 seconds and 4 minutes 33 seconds for patients with MS and control subjects, respectively. CONCLUSIONS: Nonconfluent lesions of >3 mm with ≥1 central vein were the most sensitive and specific differentiators between patients with MS and control subjects.


Asunto(s)
Leucoaraiosis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Venas Cerebrales/patología , Diagnóstico Diferencial , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Leucoaraiosis/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
4.
AJNR Am J Neuroradiol ; 37(9): 1623-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27197988

RESUMEN

BACKGROUND AND PURPOSE: Double inversion recovery has been suggested as the MR imaging contrast of choice for segmenting cortical lesions in patients with multiple sclerosis. In this study, we sought to determine the utility of double inversion recovery for cortical lesion identification by comparing 3 MR imaging reading protocols that combine different MR imaging contrasts. MATERIALS AND METHODS: Twenty-five patients with relapsing-remitting MS and 3 with secondary-progressive MS were imaged with 3T MR imaging by using double inversion recovery, dual fast spin-echo proton-density/T2-weighted, 3D FLAIR, and 3D T1-weighted imaging sequences. Lesions affecting the cortex were manually segmented by using the following 3 MR imaging reading protocols: Protocol 1 (P1) used all available MR imaging contrasts; protocol 2 (P2) used all the available contrasts except for double inversion recovery; and protocol 3(P3) used only double inversion recovery. RESULTS: Six hundred forty-three cortical lesions were identified with P1 (mean = 22.96); 633, with P2 (mean = 22.6); and 280, with P3 (mean = 10). The counts obtained by using P1 and P2 were not significantly different (P = .93). The counts obtained by using P3 were significantly smaller than those obtained by using either P1 (P < .001) or P2 (P < .001). The intraclass correlation coefficients were P1 versus P2 = 0.989, P1 versus P3 = 0.615, and P2 versus P3 = 0.588. CONCLUSIONS: MR imaging cortical lesion segmentation can be performed by using 3D T1-weighted and 3D FLAIR images acquired with a 1-mm isotropic voxel size, supported by conventional T2-weighted and proton-density images with 3-mm-thick sections. Inclusion of double inversion recovery in this multimodal reading protocol did not significantly improve the cortical lesion identification rate. A multimodal approach is superior to using double inversion recovery alone.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología
5.
Med Phys ; 40(6): 061712, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23718591

RESUMEN

PURPOSE: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. METHODS: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, λ = 543 nm) with line-generating lens, and a laser diode module (LDM, λ = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. RESULTS: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE(TM) dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to ∼40% in magnitude. The flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. CONCLUSIONS: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.


Asunto(s)
Imagenología Tridimensional/instrumentación , Rayos Láser , Radioterapia Guiada por Imagen/instrumentación , Semiconductores , Tomografía Computarizada por Rayos X/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...