Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocr Regul ; 58(1): 47-56, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563293

RESUMEN

OBJECTIVE.: Homeobox genes play an important role in health and disease including oncogenesis. The present investigation aimed to study ERN1-dependent hypoxic regulation of the expression of genes encoding homeobox proteins MEIS (zinc finger E-box binding homeobox 2) and LIM homeobox 1 family, SPAG4 (sperm associated antigen 4) and NKX3-1 (NK3 homeobox 1) in U87MG glioblastoma cells in response to inhibition of ERN1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioblastoma growth. METHODS.: The expression level of homeobox genes was studied in control (transfected by vector) and ERN1 knockdown U87MG glioblastoma cells under hypoxia induced by dimethyloxalylglycine (0.5 mM for 4 h) by quantitative polymerase chain reaction and normalized to ACTB. RESULTS.: It was found that hypoxia down-regulated the expression level of LHX2, LHX6, MEIS2, and NKX3-1 genes but up-regulated the expression level of MEIS1, LHX1, MEIS3, and SPAG4 genes in control glioblastoma cells. At the same time, ERN1 knockdown of glioblastoma cells significantly modified the sensitivity of all studied genes to a hypoxic condition. Thus, ERN1 knockdown of glioblastoma cells removed the effect of hypoxia on the expression of MEIS1 and LHX1 genes, but increased the sensitivity of MEIS2, LHX2, and LHX6 genes to hypoxia. However, the expression of MEIS3, NKX3-1, and SPAG4 genes had decreased sensitivity to hypoxia in ERN1 knockdown glioblastoma cells. Moreover, more pronounced changes under the conditions of ERN1 inhibition were detected for the pro-oncogenic gene SPAG4. CONCLUSION.: The results of the present study demonstrate that hypoxia affected the expression of homeobox genes MEIS1, MEIS2, MEIS3, LHX1, LHX2, LHX6, SPAG4, and NKX3-1 in U87MG glioblastoma cells in gene-specific manner and that the sensitivity of all studied genes to hypoxia condition is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling, and possibly contributed to the control of glioblastoma growth. A fundamentally new results of this work is the establishment of the fact regarding the dependence of hypoxic regulation of SPAG4 gene expression on ER stress, in particular ERN1, which is associated with suppression of cell proliferation and tumor growth.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Genes Homeobox , Proteínas Serina-Treonina Quinasas/genética , Proteínas con Homeodominio LIM/genética , Hipoxia de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Hipoxia/genética , Factores de Transcripción/genética , Expresión Génica , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Endorribonucleasas/genética
2.
Endocr Regul ; 57(1): 162-172, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561833

RESUMEN

Objective. Single-walled carbon nanotubes (SWCNTs) are considered to be one of the nanomaterials attractive for biomedical applications, particularly in the health sciences as imaging probes and drug carriers, especially in the field of cancer therapy. The increasing exploitation of nanotubes necessitates a comprehensive evaluation of the potential impact of these nanomaterials, which purposefully accumulate in the cell nucleus, on the human health and the function of the genome in the normal and tumor tissues. The aim of this study was to investigate the sensitivity of the expression of DNAJB9 and some other genes associated with the endoplasmic reticulum (ER) stress and cell proliferation to low doses of SWCNTs in normal human astrocytes (NHA/TS) and glioblastoma cells (U87MG) with and without an inhibition of ERN1 signaling pathway of the ER stress. Methods. Normal human astrocytes, line NHA/TS and U87 glioblastoma cells stable transfected by empty vector or dnERN1 (dominant-negative construct of ERN1) were exposed to low doses of SWCNTs (2 and 8 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 mRNAs were measured by a quantitative polymerase chain reaction and normalized to ACTB mRNA. Results. It was found that the low doses of SWCNTs up-regulated the expression of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 genes in normal human astrocytes in dose-dependent (2 and 8 ng/ml) and gene-specific manner. These nanotubes also increased the expression of most studied genes in control (transfected by empty vector) U87 glioblastoma cells, but with much lesser extent than in NHA/TS. However, the expression of CLU gene in control U87 glioblastoma cells treated with SWCNTs was down-regulated in a dose-dependent manner. Furthermore, the expression of TOB1 and P4HA2 genes did not significantly change in these glioblastoma cells treated by lower dose of SWCNTs only. At the same time, inhibition of ERN1 signaling pathway of ER stress in U87 glioblastoma cells led mainly to a stronger resistance of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, and P4HA2 gene expression to both doses of SWCNTs. Conclusion. The data obtained demonstrate that the low doses of SWCNTs disturbed the genome functions by changing the levels of key regulatory gene expressions in gene-specific and dose-dependent manner, but their impact was much stronger in the normal human astrocytes in comparison with the tumor cells. It is possible that ER stress, which is constantly present in tumor cells and responsible for multiple resistances, also created a partial resistance to the SWCNTs action. Low doses of SWCNTs induced more pronounced changes in the expression of diverse genes in the normal human astrocytes compared to glioblastoma cells indicating for a possible both genotoxic and neurotoxic effects with a greater extent in the normal cells.


Asunto(s)
Glioblastoma , Nanotubos de Carbono , Humanos , Glioblastoma/genética , Astrocitos , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Proteínas del Choque Térmico HSP40
3.
Endocr Regul ; 58(1): 1-10, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345493

RESUMEN

Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.


Asunto(s)
Estrés del Retículo Endoplásmico , Hidrocortisona , Receptor de Insulina , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Proteínas del Choque Térmico HSP40 , Hidrocortisona/farmacología , Hipoxia , Insulina/farmacología , Proteínas de la Membrana/genética , Chaperonas Moleculares , ARN Mensajero/metabolismo , Tunicamicina/farmacología
4.
Endocr Regul ; 56(3): 216-226, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35843713

RESUMEN

Objective. Nanographene oxide, an oxidation derivative of graphene, is considered to be one of the nanomaterials attractive for biomedical applications, although this nanomaterial is toxic. The increasing exploitation of graphene-based materials necessitates a comprehensive evaluation of the potential impact of these materials on the human health. Moreover, it is necessary to investigate in detail the mechanisms of its toxic effect on living cells particularly at the genome level. The present study aimed to evaluate the impact of low doses of nanographene oxide on the expression of key regulatory genes in normal human astrocytes. Methods. Normal human astrocytes, line NHA/TS, were exposed to low doses of nanographene oxide (1 and 4 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of NAMPT, TSPAN13, BCAR3, BRCA1, PTGS2, P4HA1, and P4HA2 mRNAs as well as microRNAs were measured by quantitative polymerase chain reaction. Results. It was found that the low doses of nanographene oxide induced a dysregulation in the expression of the key regulatory genes in normal human astrocytes in dose-dependent (1 and 4 ng/ml) and gene-specific manner. Nanographene oxide also strongly suppressed the expression of NAMPT, BCAR3, and TSPAN13 genes and significantly up-regulated BRCA1, PTGS2, P4HA1, and P4HA2 ones with a more significant effect in P4HA1 and P4HA2 genes. The expression of miR-96-5p and miR-145-5p was also down-regulated in astrocytes treated with nanographene oxide in a dose-dependent manner. Conclusion. The data obtained demonstrate that the low doses of nanographene oxide disturbed the genome functions by changing the expression levels of key regulatory genes in gene-specific and dose-dependent manner. Moreover, a higher dose of nanographene oxide induced more pronounced changes in expression of genes indicating for both genotoxic and neurotoxic possible effects in the normal human astrocytes.


Asunto(s)
Grafito , MicroARNs , Astrocitos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Expresión Génica , Grafito/metabolismo , Grafito/toxicidad , Humanos , MicroARNs/genética , Óxidos/metabolismo , Óxidos/toxicidad , Tetraspaninas/genética , Tetraspaninas/metabolismo
5.
Endocr Regul ; 56(2): 115-125, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489050

RESUMEN

Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.


Asunto(s)
MicroARNs , Nanotubos de Carbono , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Curr Res Toxicol ; 2: 64-71, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345851

RESUMEN

The unique properties of single-walled carbon nanotubes (SWCNTs) make them viable candidates for versatile implementation in the biomedical devices. They are able to cross the blood-brain barrier, enter cells and accumulate in cell nuclei. We studied the effect of these carbon nanoparticles on the expression of genes associated with endoplasmic reticulum stress and proliferation, cell viability and cancerogenesis as well as microRNAs in normal human astrocytes. We have shown that treatment of normal human astrocytes by small doses of SWCNTs (2 and 8 ng/ml of medium for 24 hrs) affect the expression of DNAJB9, IGFBP3, IGFBP6, CLU, ZNF395, KRT18, GJA1, HILPDA, and MEST mRNAs as well as several miRNAs, which have binding sites at 3'-UTR of these mRNAs. These changes in the expression profile of individual mRNAs introduced by SWCNTs are dissimilar in magnitude and direction and are the result of both transcriptional and posttranscriptional mechanisms of regulation. It is possible that these changes in gene expressions are mediated by the endoplasmic reticulum stress introduced by carbon nanotubes and reflect the disturbance of the genome stability. In conclusion, the low doses of SWCNTs disrupt the functional integrity of the genome and possibly exhibit a genotoxic effect.

7.
Endocr Regul ; 54(3): 183-195, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857715

RESUMEN

OBJECTIVE: The aim of the present investigation was to study the expression of genes encoding polyfunctional proteins insulinase (insulin degrading enzyme, IDE) and pitrilysin metallopeptidase 1 (PITRM1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of metabolism through ERN1 signaling as well as hypoxia, glucose and glutamine deprivations. METHODS: The expression level of IDE and PITRM1 genes was studied in control and ERN1 knockdown U87 glioma cells under glucose and glutamine deprivations as well as hypoxia by quantitative polymerase chain reaction. RESULTS: It was found that the expression level of IDE and PITRM1 genes was down-regulated in ERN1 knockdown (without ERN1 protein kinase and endoribonuclease activity) glioma cells in comparison with the control glioma cells, being more significant for PITRM1 gene. We also found up-regulation of microRNA MIR7-2 and MIRLET7A2, which have specific binding sites in 3'-untranslated region of IDE and PITRM1 mRNAs, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Only inhibition of ERN1 endoribonuclease did not change significantly the expression of IDE and PITRM1 genes in glioma cells. The expression of IDE and PITRM1 genes is preferentially regulated by ERN1 protein kinase. We also showed that hypoxia down-regulated the expression of IDE and PITRM1 genes and that knockdown of ERN1 signaling enzyme function modified the response of these gene expressions to hypoxia. Glucose deprivation increased the expression level of IDE and PITRM1 genes, but ERN1 knockdown enhanced only the effect of glucose deprivation on PITRM1 gene expression. Glutamine deprivation did not affect the expression of IDE gene in both types of glioma cells, but up-regulated PITRM1 gene and this up-regulation was stronger in ERN1 knockdown cells. CONCLUSIONS: Results of this investigation demonstrate that ERN1 knockdown significantly decreases the expression of IDE and PITRM1 genes by ERN1 protein kinase mediated mechanism. The expression of both studied genes was sensitive to hypoxia as well as glucose deprivation and dependent on ERN1 signaling in gene-specific manner. It is possible that the level of these genes expression under hypoxia and glucose deprivation is a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the control of the cell metabolism.


Asunto(s)
Hipoxia de la Célula/fisiología , Endorribonucleasas/genética , Glioma/genética , Glucosa/deficiencia , Insulisina/genética , Metaloendopeptidasas/genética , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/metabolismo , Glioma/patología , Glucosa/farmacología , Humanos , Insulisina/metabolismo , Metaloendopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Endocr Regul ; 54(3): 196-206, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857719

RESUMEN

OBJECTIVE: The aim of the present investigation was to study the expression of genes encoding homeobox proteins ZEB2 (zinc finger E-box binding homeobox 2), TGIF1 (TGFB induced factor homeobox 1), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, LHX6, NKX3-1 (NK3 homeobox 1), and PRRX1 (paired related homeobox 1) in U87 glioma cells in response to glucose deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of it possible significance in the control of glioma growth through ERN1 signaling and chemoresistance. METHODS: The expression level of homeobox family genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation condition by real-time quantitative polymerase chain reaction. RESULTS: It was shown that the expression level of ZEB2, TGIF1, PRRX1, and LHX6 genes was up-regulated in control glioma cells treated by glucose deprivation. At the same time, the expression level of three other genes (NKX3-1, LHX1, and LHX2) was down-regulated. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation condition on the expression almost all studied genes. Thus, treatment of glioma cells without ERN1 enzymatic activity by glucose deprivation condition lead to down-regulation of the expression level of ZEB2 and SPAG4 as well as to more significant up-regulation of PRRX1 and TGIF1 genes. Moreover, the expression of LHX6 and NKX3-1 genes lost their sensitivity to glucose deprivation but LHX1 and LHX2 genes did not change it significantly. CONCLUSIONS: The results of this investigation demonstrate that ERN1 knockdown significantly modifies the sensitivity of most studied homeobox gene expressions to glucose deprivation condition and that these changes are a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to glioma cell growth and possibly to their chemoresistance.


Asunto(s)
Neoplasias Encefálicas/genética , Endorribonucleasas/genética , Genes Homeobox , Glioma/genética , Glucosa/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Homeobox/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Glucosa/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Transducción de Señal/genética
9.
Endocr Regul ; 53(4): 237-249, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734653

RESUMEN

OBJECTIVE: The aim of the present study was to examine the effect of glucose deprivation on the expression of genes encoded glucocorticoid receptor (NR3C1) and some related proteins (NR3C2, AHR, NRIP1, NNT, ARHGAP35, SGK1, and SGK3) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme 1) for evaluation of their possible significance in the control of glioma growth through endoplasmic reticulum stress signaling mediated by IRE1 and glucose deprivation. METHODS: The expression of NR3C1, NR3C2, AHR, NRIP1, NNT, ARHGAP35, SGK1, and SGK3 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control cells) and cells without ERN1 signaling enzyme function (transfected by dnERN1) under glucose deprivation was studied by real time quantitative polymerase chain reaction. RESULTS: It was shown that the expression level of NR3C2, AHR, SGK1, SGK3, and NNT genes was up-regulated in control U87 glioma cells under glucose deprivation condition in comparison with the control cells growing with glucose. At the same time, the expression of NRIP1 gene is down-regulated in these glioma cells under glucose deprivation, but NR3C1 and ARHGAP35 genes was resistant to this experimental condition. We also showed that inhibition of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose deprivation condition. Thus, effect of glucose deprivation on the expression level of NR3C2, AHR, and SGK1 genes was significantly stronger in ERN1 knockdown U87 glioma cells since the expression of NNT gene was resistant to glucose deprivation condition. Moreover, the inhibition of ERN1 enzymatic activities in U87 glioma cells led to up-regulation of ARHGAP35 gene expression and significant down-regulation of the expression of SGK3 gene in response to glucose deprivation condition. CONCLUSIONS: Results of this study demonstrated that glucose deprivation did not change the expression level of NR3C1 gene but it significantly affected the expression of NR3C2, AHR, NRIP, SGK1, SGK3, and NNT genes in vector-transfected U87 glioma cells in gene specific manner and possibly contributed to the control of glioma growth since the expression of most studied genes in glucose deprivation condition was significantly dependent on the functional activity of IRE1 signaling enzyme.


Asunto(s)
Neoplasias Encefálicas/genética , Endorribonucleasas/genética , Glioma/genética , Glucosa/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Receptores de Glucocorticoides/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Endorribonucleasas/deficiencia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glioma/patología , Glucosa/farmacología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Mitocondriales/genética , NADP Transhidrogenasa AB-Específica/genética , Proteína de Interacción con Receptores Nucleares 1/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...