Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 282(17): 3262-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077311

RESUMEN

C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O2) and consumes 1 mol O2 per mol FGly formed. For maximal activity FGE requires an O2 concentration of 9% (105 µM). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O2 -dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O2 without involvement of any activating cofactor.


Asunto(s)
Alanina/análogos & derivados , Glicina/análogos & derivados , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Sulfatasas/metabolismo , Alanina/química , Alanina/metabolismo , Animales , Baculoviridae/genética , Biocatálisis , Dominio Catalítico , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Ditiotreitol/química , Pruebas de Enzimas , Expresión Génica , Glicina/química , Glicina/metabolismo , Humanos , Cinética , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Oxígeno/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Sulfatasas/química , Sulfatasas/genética
3.
Chemistry ; 15(27): 6619-25, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19472232

RESUMEN

Orotidine-5'-monophosphate decarboxylase (OMPD) catalyzes the decarboxylation of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate (UMP) in an extremely proficient manner. The reaction does not require any cofactors and proceeds by an unknown mechanism. In addition to decarboxylation, OMPD is able to catalyze other reactions. We show that several C6-substituted UMP derivatives undergo hydrolysis or substitution reactions that depend on a lysine residue (Lys314) in the OMPD active site. 6-Cyano-UMP is converted to UMP, and UMP derivatives with good leaving groups inhibit OMPD by a suicide mechanism in which Lys314 covalently binds to the substrate. These non-classical reactivities of human OMPD were characterized by cocrystallization and freeze-trapping experiments with wild-type OMPD and two active-site mutants by using substrate and inhibitor nucleotides. The structures show that the C6-substituents are not coplanar with the pyrimidine ring. The extent of this substrate distortion is a function of the substituent geometry. Structure-based mechanisms for the reaction of 6-substituted UMP derivatives are extracted in accordance with results from mutagenesis, mass spectrometry, and OMPD enzyme activity. The Lys314-based mechanisms explain the chemodiversity of OMPD, and offer a strategy to design mechanism-based inhibitors that could be used for antineoplastic purposes for example.


Asunto(s)
Lisina , Orotidina-5'-Fosfato Descarboxilasa , Animales , Catálisis , Humanos , Hidrólisis , Lisina/química , Lisina/genética , Lisina/metabolismo , Methanobacterium/enzimología , Modelos Moleculares , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Plasmodium falciparum/enzimología , Estereoisomerismo , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/metabolismo
4.
Bioorg Med Chem Lett ; 19(9): 2595-8, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19328688

RESUMEN

According to the docking studies and the analysis of a co-crystal structure of GW4064 with FXR, a series of 3-aryl heterocyclic isoxazole analogs were designed and synthesized. N-Oxide pyridine analog (7b) was identified as a promising FXR agonist with potent binding affinity and good efficacy, supporting our hypothesis that through an additional hydrogen bond interaction between the pyridine substituent of isoxazole analogs and Tyr373 and Ser336 of FXR, binding affinity and functional activity could be improved.


Asunto(s)
Química Farmacéutica/métodos , Isoxazoles/síntesis química , Sitios de Unión , Cristalografía por Rayos X/métodos , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Isoxazoles/química , Isoxazoles/farmacología , Ligandos , Modelos Químicos , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Serina/química , Tirosina/química
5.
Proc Natl Acad Sci U S A ; 103(8): 2576-81, 2006 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-16477020

RESUMEN

Conjugated linoleic acids (CLAs) affect body fat gain, carcinogenesis, insulin resistance, and lipid peroxidation in mammals. Several isomers of CLA exist, of which the (9Z, 11E) and (10E, 12Z) isomers have beneficial effects on human metabolism but are scarce in foods. Bacterial polyunsaturated fatty acid isomerases are promising biotechnological catalysts for CLA production. We describe six crystal structures of the Propionibacterium acnes polyunsaturated fatty acid isomerase PAI in apo- and product-bound forms. The three-domain flavoprotein has previously undescribed folds outside the FAD-binding site. Conformational changes in a hydrophobic channel toward the active site reveal a unique gating mechanism for substrate specificity. The geometry of the substrate-binding site explains the length preferences for C18 fatty acids. A catalytic mechanism for double-bond isomerization is formulated that may be altered to change substrate specificity for syntheses of rare CLAs from easily accessible precursors.


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono/química , Ácidos Grasos Insaturados/química , Propionibacterium acnes/enzimología , Secuencia de Aminoácidos , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Catálisis , Cristalografía , Ácidos Grasos Insaturados/metabolismo , Isomerismo , Datos de Secuencia Molecular , Conformación Proteica , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 103(1): 81-6, 2006 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-16368756

RESUMEN

The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.


Asunto(s)
Alanina/análogos & derivados , Glicina/análogos & derivados , Modelos Moleculares , Sulfatasas/metabolismo , Alanina/biosíntesis , Secuencia de Aminoácidos , Línea Celular Tumoral , Cristalización , Activación Enzimática/fisiología , Glicina/biosíntesis , Humanos , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Sulfatasas/química
7.
Cell ; 121(4): 541-552, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15907468

RESUMEN

Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.


Asunto(s)
Cisteína/análogos & derivados , Glicina/análogos & derivados , Glicina/biosíntesis , Esfingolipidosis/metabolismo , Sulfatasas/química , Sulfatasas/metabolismo , Alanina/análogos & derivados , Alanina/biosíntesis , Alanina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Calcio/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Glicina/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutación Missense/fisiología , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Oxígeno/metabolismo , Estructura Secundaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Esfingolipidosis/genética , Sulfatasas/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA