Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240424

RESUMEN

Cry11 proteins are toxic to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. Cry11Aa and Cry11Bb are protoxins, which when activated present their active-toxin form in two fragments between 30 and 35 kDa respectively. Previous studies conducted with Cry11Aa and Cry11Bb genes using DNA shuffling generated variant 8, which presented a deletion in the first 73 amino acids and one at position 572 and 9 substitutions including L553F and L556W. In this study, variant 8 mutants were constructed using site-directed mutagenesis, resulting in conversion of phenylalanine (F) and tryptophan (W) to leucine (L) at positions 553 and 556, respectively, producing the mutants 8F553L, 8W556L, and 8F553L/8W556L. Additionally, two mutants, A92D and C157R, derived from Cry11Bb were also generated. The proteins were expressed in the non-crystal strain BMB171 of Bacillus thuringiensis and subjected to median-lethal concentration (LC50) tests on first-instar larvae of A. aegypti. LC50 analysis showed that the 8F553L, 8W556L, 8F553L/8W556L, and C157R variants lost their toxic activity (>500 ng·mL-1), whereas the A92D protein presented a loss of toxicity of 11.4 times that of Cry11Bb. Cytotoxicity assays performed using variant 8, 8W556L and the controls Cry11Aa, Cry11Bb, and Cry-negative BMB171 on the colorectal cancer cell line SW480 reported 30-50% of cellular viability except for BMB171. Molecular dynamic simulations performed to identify whether the mutations at positions 553 and 556 were related to the stability and rigidity of the functional tertiary structure (domain III) of the Cry11Aa protein and variant 8 showed the importance of these mutations in specific regions for the toxic activity of Cry11 against A. aegypti. This generates pertinent knowledge for the design of Cry11 proteins and their biotechnological applications in vector-borne disease control and cancer cell lines.


Asunto(s)
Aedes , Bacillus thuringiensis , Infección por el Virus Zika , Virus Zika , Animales , Endotoxinas/genética , Endotoxinas/toxicidad , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/metabolismo , Mosquitos Vectores , Aedes/genética , Aedes/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Virus Zika/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva/genética , Larva/metabolismo
2.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364090

RESUMEN

Parasporin 2 has cytotoxic effects against numerous colon cancer cell lines, making it a viable alternative to traditional treatments. However, its mechanism of action and receptors remain unknown. In this study, site-directed mutagenesis was used to obtain PS2Aa1 mutants with variation in domain I at positions 256 and 257. Variants 015, 002, 3-3, 3-35, and 3-45 presented G256A, G256E, G257A, G257V, and G257E substitutions, respectively. Cytotoxicity tests were performed for the cell viability of cell lines SW480, SW620, and CaCo-2. Mutants 3-3, 3-35, and 3-45 efficiently killed the cell lines. It was found that the activated forms of caspase-3 and PARP were in higher abundance as well as increased production of γH2AX when 3-35 was used to treat CaCo-2 and SW480. To assess possible membrane-binding receptors involved in the interaction, an APN receptor blocking assay showed reduced activity of some parasporins. Hence, we performed molecular docking and molecular dynamics simulations to analyze the stability of possible interactions and identify the residues that could be involved in the protein-protein interaction of PS2Aa1 and APN. We found that residues 256 and 257 facilitate the interaction. Parasporin 3-35 is promising because it has higher cytotoxicity than PS2Aa1.


Asunto(s)
Antineoplásicos , Bacillus thuringiensis , Neoplasias Colorrectales , Humanos , Bacillus thuringiensis/metabolismo , Simulación del Acoplamiento Molecular , Células CACO-2 , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Apoptosis
3.
Biosci Rep ; 41(12)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34796903

RESUMEN

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Endotoxinas/farmacología , Fragmentos de Péptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/farmacología , Alphacoronavirus , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Antígenos CD13/metabolismo , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Cricetulus , Endotoxinas/toxicidad , Hemólisis/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/toxicidad , Conformación Proteica en Hélice alfa , Oveja Doméstica , Glicoproteína de la Espiga del Coronavirus/toxicidad , Relación Estructura-Actividad
4.
Evol Bioinform Online ; 16: 1176934320924681, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782424

RESUMEN

Directed evolution methods mimic in vitro Darwinian evolution, inducing random mutations and selective pressure in genes to obtain proteins with enhanced characteristics. These techniques are developed using trial-and-error testing at an experimental level with a high degree of uncertainty. Therefore, in silico modeling of directed evolution is required to support experimental assays. Several in silico approaches have reproduced directed evolution, using statistical, thermodynamic, and kinetic models in an attempt to recreate experimental conditions. Likewise, optimization techniques using heuristic models have been used to understand and find the best scenarios of directed evolution. Our study uses an in silico model named HeurIstics DirecteD EvolutioN, which is based on a genetic algorithm designed to generate chimeric libraries from 2 parental genes, cry11Aa and cry11Ba, of Bacillus thuringiensis. These genes encode crystal-shaped δ-endotoxins with 3 conserved domains. Cry11 toxins are of biotechnological interest because they have shown to be effective as biopesticides for disease-spreading vectors. With our heuristic model, we considered experimental parameters such as DNA fragmentation length, number of generations or simulation cycles, and mutation rate, to get characteristics of Cry11 chimeric libraries such as percentage of population identity, truncation of variants obtained from the presence of internal stop codons, percentage of thermodynamic diversity, and stability of variants. Our study allowed us to focus on experimental conditions that may be useful for the design of in vitro and in silico experiments of directed evolution with Cry toxins of 3 conserved domains. Furthermore, we obtained in silico libraries of Cry11 variants, in which structural characteristics of wild Cry families were observed in a review of a sample of in silico sequences. We consider that future studies could use our in silico libraries and heuristic computational models, as the one suggested here, to support in vitro experiments of directed evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA