Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150564

RESUMEN

PURPOSE: Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN: We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n=41), astrocytoma WHO grade 2 (n=7) and healthy controls (n=20) and compared TSPO-PET signals of the non-lesion (i.e. contralateral) hemisphere. Back-translation in syngeneic SB28 glioblastoma mice was used to characterize PET alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS: Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS: Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.

2.
Mov Disord ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847384

RESUMEN

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA