Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
2.
Nat Immunol ; 24(2): 349-358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717723

RESUMEN

The biology driving individual patient responses to severe acute respiratory syndrome coronavirus 2 infection remains ill understood. Here, we developed a patient-centric framework leveraging detailed longitudinal phenotyping data and covering a year after disease onset, from 215 infected individuals with differing disease severities. Our analyses revealed distinct 'systemic recovery' profiles, with specific progression and resolution of the inflammatory, immune cell, metabolic and clinical responses. In particular, we found a strong inter-patient and intra-patient temporal covariation of innate immune cell numbers, kynurenine metabolites and lipid metabolites, which highlighted candidate immunologic and metabolic pathways influencing the restoration of homeostasis, the risk of death and that of long COVID. Based on these data, we identified a composite signature predictive of systemic recovery, using a joint model on cellular and molecular parameters measured soon after disease onset. New predictions can be generated using the online tool http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-systemic-recovery-prediction-app , designed to test our findings prospectively.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Quinurenina , Atención Dirigida al Paciente
3.
Sci Immunol ; 6(64): eabj8825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597125

RESUMEN

The antitumor action of immune checkpoint blockade (ICB) is primarily mediated by CD8+ T cells. How sensitivity to ICB varies across CD8+ T cell subsets and clonotypes and the relationship of these with clinical outcome is unclear. To explore this, we used single-cell V(D)J and RNA-sequencing to track gene expression changes elicited by ICB across individual peripheral CD8+ T cell clones, identify baseline markers of CD8+ T cell clonal sensitivity, and chart how CD8+ T cell transcriptional changes vary according to phenotypic subset and clonal size. We identified seven subsets of CD8+ T cells with divergent reactivity to ICB and found that the cytotoxic effector subset showed the greatest number of differentially expressed genes while remaining stable in clonal size after ICB. At the level of CD8+ T cell clonotypes, we found a relationship between transcriptional changes and clone size, with large clones showing a greater number of differentially regulated genes enriched for pathways including T cell receptor (TCR) signaling. Cytotoxic CD8+ effector clones were more likely to persist following ICB and were more likely to correspond with public tumor-infiltrating lymphocyte clonotypes. Last, we demonstrated that individuals whose CD8+ T cell pretreatment showed low cytotoxicity and had fewer expanded clones typically had worse outcomes after ICB treatment. This work further advances understanding of the molecular determinants of ICB response, assisting in the search for peripheral prognostic biomarkers and highlighting the importance of the baseline CD8+ immune landscape in determining ICB response in metastatic melanoma.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ipilimumab/farmacología , Nivolumab/farmacología , Linfocitos T CD8-positivos/inmunología , Humanos , Supervivencia sin Progresión
4.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051148

RESUMEN

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Estudios Longitudinales , Activación de Linfocitos/genética , Fosforilación Oxidativa , Fenotipo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma
5.
Am J Hum Genet ; 108(6): 983-1000, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909991

RESUMEN

We present EPISPOT, a fully joint framework which exploits large panels of epigenetic annotations as variant-level information to enhance molecular quantitative trait locus (QTL) mapping. Thanks to a purpose-built Bayesian inferential algorithm, EPISPOT accommodates functional information for both cis and trans actions, including QTL hotspot effects. It effectively couples simultaneous QTL analysis of thousands of genetic variants and molecular traits with hypothesis-free selection of biologically interpretable annotations which directly contribute to the QTL effects. This unified, epigenome-aided learning boosts statistical power and sheds light on the regulatory basis of the uncovered hits; EPISPOT therefore marks an essential step toward improving the challenging detection and functional interpretation of trans-acting genetic variants and hotspots. We illustrate the advantages of EPISPOT in simulations emulating real-data conditions and in a monocyte expression QTL study, which confirms known hotspots and finds other signals, as well as plausible mechanisms of action. In particular, by highlighting the role of monocyte DNase-I sensitivity sites from >150 epigenetic annotations, we clarify the mediation effects and cell-type specificity of major hotspots close to the lysozyme gene. Our approach forgoes the daunting and underpowered task of one-annotation-at-a-time enrichment analyses for prioritizing cis and trans QTL hits and is tailored to any transcriptomic, proteomic, or metabolomic QTL problem. By enabling principled epigenome-driven QTL mapping transcriptome-wide, EPISPOT helps progress toward a better functional understanding of genetic regulation.


Asunto(s)
Algoritmos , Simulación por Computador , Epigenoma , Modelos Genéticos , Mutación , Fenotipo , Sitios de Carácter Cuantitativo , Teorema de Bayes , Mapeo Cromosómico , Humanos
6.
PLoS Comput Biol ; 16(6): e1007882, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32492067

RESUMEN

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.


Asunto(s)
Teorema de Bayes , Proteínas Sanguíneas/genética , Sitios de Carácter Cuantitativo , Biomarcadores/sangre , Estudio de Asociación del Genoma Completo , Humanos
7.
Ann Appl Stat ; 14(2): 905-928, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34992707

RESUMEN

We tackle modelling and inference for variable selection in regression problems with many predictors and many responses. We focus on detecting hotspots, that is, predictors associated with several responses. Such a task is critical in statistical genetics, as hotspot genetic variants shape the architecture of the genome by controlling the expression of many genes and may initiate decisive functional mechanisms underlying disease endpoints. Existing hierarchical regression approaches designed to model hotspots suffer from two limitations: their discrimination of hotspots is sensitive to the choice of top-level scale parameters for the propensity of predictors to be hotspots, and they do not scale to large predictor and response vectors, for example, of dimensions 103-105 in genetic applications. We address these shortcomings by introducing a flexible hierarchical regression framework that is tailored to the detection of hotspots and scalable to the above dimensions. Our proposal implements a fully Bayesian model for hotspots based on the horseshoe shrinkage prior. Its global-local formulation shrinks noise globally and, hence, accommodates the highly sparse nature of genetic analyses while being robust to individual signals, thus leaving the effects of hotspots unshrunk. Inference is carried out using a fast variational algorithm coupled with a novel simulated annealing procedure that allows efficient exploration of multimodal distributions.

8.
Nat Commun ; 10(1): 540, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710084

RESUMEN

Hundreds of genetic variants have been associated with Body Mass Index (BMI) through genome-wide association studies (GWAS) using observational cohorts. However, the genetic contribution to efficient weight loss in response to dietary intervention remains unknown. We perform a GWAS in two large low-caloric diet intervention cohorts of obese participants. Two loci close to NKX6.3/MIR486 and RBSG4 are identified in the Canadian discovery cohort (n = 1166) and replicated in the DiOGenes cohort (n = 789). Modulation of HGTX (NKX6.3 ortholog) levels in Drosophila melanogaster leads to significantly altered triglyceride levels. Additional tissue-specific experiments demonstrate an action through the oenocytes, fly hepatocyte-like cells that regulate lipid metabolism. Our results identify genetic variants associated with the efficacy of weight loss in obese subjects and identify a role for NKX6.3 in lipid metabolism, and thereby possibly weight control.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Pérdida de Peso/genética , Adulto , Animales , Teorema de Bayes , Estudios de Cohortes , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Proteínas de Homeodominio/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Factores de Transcripción/genética , Triglicéridos/metabolismo
9.
Biostatistics ; 18(4): 618-636, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334312

RESUMEN

Combined inference for heterogeneous high-dimensional data is critical in modern biology, where clinical and various kinds of molecular data may be available from a single study. Classical genetic association studies regress a single clinical outcome on many genetic variants one by one, but there is an increasing demand for joint analysis of many molecular outcomes and genetic variants in order to unravel functional interactions. Unfortunately, most existing approaches to joint modeling are either too simplistic to be powerful or are impracticable for computational reasons. Inspired by Richardson and others (2010, Bayesian Statistics 9), we consider a sparse multivariate regression model that allows simultaneous selection of predictors and associated responses. As Markov chain Monte Carlo (MCMC) inference on such models can be prohibitively slow when the number of genetic variants exceeds a few thousand, we propose a variational inference approach which produces posterior information very close to that of MCMC inference, at a much reduced computational cost. Extensive numerical experiments show that our approach outperforms popular variable selection methods and tailored Bayesian procedures, dealing within hours with problems involving hundreds of thousands of genetic variants and tens to hundreds of clinical or molecular outcomes.


Asunto(s)
Estudios de Asociación Genética/métodos , Variación Genética , Cadenas de Markov , Modelos Estadísticos , Método de Montecarlo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...