Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Inflamm (Lond) ; 21(1): 15, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698414

RESUMEN

INTRODUCTION: PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE: To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS: PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1ß; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1ß and IL-18, within lung tissue. CONCLUSION: Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1ß. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.

2.
Clin Pharmacol ; 16: 1-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197085

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a betacoronavirus responsible for the COVID-19 pandemic, causing respiratory disorders, and even death in some individuals, if not appropriately treated in time. To face the pandemic, preventive measures have been taken against contagions and the application of vaccines to prevent severe disease and death cases. For the COVID-19 treatment, antiviral, antiparasitic, anticoagulant and other drugs have been reused due to limited specific medicaments for the disease. Drug repurposing is an emerging strategy with therapies that have already tested safe in humans. One promising alternative for systematic experimental screening of a vast pool of compounds is computational drug repurposing (in silico assay). Using these tools, new uses for approved drugs such as chloroquine, hydroxychloroquine, ivermectin, zidovudine, ribavirin, lamivudine, remdesivir, lopinavir and tenofovir/emtricitabine have been conducted, showing effectiveness in vitro and in silico against SARS-CoV-2 and some of these, also in clinical trials. Additionally, therapeutic options have been sought in natural products (terpenoids, alkaloids, saponins and phenolics) with promising in vitro and in silico results for use in COVID-19 disease. Among these, the most studied are resveratrol, quercetin, hesperidin, curcumin, myricetin and betulinic acid, which were proposed as SARS-CoV-2 inhibitors. Among the drugs reused to control the SARS-CoV2, better results have been observed for remdesivir in hospitalized patients and outpatients. Regarding natural products, resveratrol, curcumin, and quercetin have demonstrated in vitro antiviral activity against SARS-CoV-2 and in vivo, a nebulized formulation has demonstrated to alleviate the respiratory symptoms of COVID-19. This review shows the evidence of drug repurposing efficacy and the potential use of natural products as a treatment for COVID-19. For this, a search was carried out in PubMed, SciELO and ScienceDirect databases for articles about drugs approved or under study and natural compounds recognized for their antiviral activity against SARS-CoV-2.

3.
Immunotherapy ; 15(17): 1477-1495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37822251

RESUMEN

Since HIV was identified as the etiological agent of AIDS, there have been significant advances in antiretroviral therapy (ART) that has reduced morbidity/mortality. Still, the viral genome's high mutation rate, suboptimal ART regimens, incomplete adherence to therapy and poor control of the viral load generate variants resistant to multiple drugs. Licensing over 30 anti-HIV drugs worldwide, including integrase inhibitors, has marked a milestone since they are potent and well-tolerated drugs. In addition, they favor a faster recovery of CD4+ T cells. They also increase the diversity profile of the gut microbiota and reduce inflammatory markers. All of these highlight the importance of including them in different ART regimens.


Research on HIV/AIDS has been focused on finding ways to prevent or cure the disease. One important class of drugs called integrase inhibitors has gained attention. These drugs are effective and have been widely used in the past decade to treat HIV. Integrase inhibitors help in the recovery of immune cells and improve the diversity of gut bacteria while reducing inflammation. It is important to include these drugs in treatment regimens for people living with HIV.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Inhibidores de Integrasa/uso terapéutico , Infecciones por VIH/tratamiento farmacológico
4.
Sci Rep ; 13(1): 16766, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798386

RESUMEN

Despite being under constant exposure to HIV-1, some individuals do not show serological or clinical evidence of infection and are known as HESN (HIV-Exposed Seronegative). Multiple studies in different HESN cohorts have linked the NK cells as a correlate of resistance; however, little is known about the role of these cells in Men Who Have Sex with Men (MSM) with high risk sexual behaviors. We evaluated a general overview of activation and effector features of NK cells of MSM co-cultured with LT CD4+ HIV+ in which MSM at high risk of HIV-1 infection (HR-MSM) exhibit higher capacity to eliminate infected cells, reduced percentages of CD69+ cells when compared to MSM at low risk of infection (LR-MSM). In addition, we found that, despite the lower levels of CD69+ NK cells on HR-MSM group, within this population, higher percentages of CD69+ IFN-γ+ and CD69+ NKG2D+ NK cells were found together with higher levels of RANTES and Granzyme B production with higher antiviral capacity, resulting in a lower concentration of p24 protein and p24+ CD4+ T cells. Altogether, this information suggests that NK cells of MSM could impact the capacity to face the viral infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , VIH-1/fisiología , Infecciones por VIH/epidemiología , Conducta Sexual , Células Asesinas Naturales
5.
Sci Rep ; 13(1): 12773, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550362

RESUMEN

Airborne particulate matter produced by industrial sources and automobiles has been linked to increased susceptibility to infectious diseases and it is known to be recognized by cells of the immune system. The molecular mechanisms and changes in gene expression profiles induced in immune cells by PM have not been fully mapped out or systematically integrated. Here, we use RNA-seq to analyze mRNA profiles of human peripheral blood mononuclear cells after exposure to coarse particulate matter (PM10). Our analyses showed that PM10 was able to reprogram the expression of 1,196 genes in immune cells, including activation of a proinflammatory state with an increase in cytokines and chemokines. Activation of the IL-36 signaling pathway and upregulation of chemokines involved in neutrophil and monocyte recruitment suggest mechanisms for inflammation upon PM exposure, while NK cell-recruiting chemokines are repressed. PM exposure also increases transcription factors associated with inflammatory pathways (e.g., JUN, RELB, NFKB2, etc.) and reduces expression of RNases and pathogen response genes CAMP, DEFAs, AZU1, APOBEC3A and LYZ. Our analysis across gene regulatory and signaling pathways suggests that PM plays a role in the dysregulation of immune cell functions, relevant for antiviral responses and general host defense against pathogens.


Asunto(s)
Leucocitos Mononucleares , Material Particulado , Humanos , Material Particulado/toxicidad , Leucocitos Mononucleares/metabolismo , Quimiocinas/metabolismo , Expresión Génica
6.
Arch Virol ; 168(8): 218, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530901

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) reservoir, composed of cells harboring the latent, integrated virus, is not eliminated by antiretroviral therapy. It therefore represents a significant barrier to curing the infection. The biology of HIV-1 reservoirs, the mechanisms of their persistence, and effective strategies for their eradication are not entirely understood. Here, we review the molecular mechanisms by which HIV-1 reservoirs develop, the cells and compartments where the latent virus resides, and advancements in curative therapeutic strategies. We first introduce statistics and relevant data on HIV-1 infection, aspects of pathogenesis, the role of antiretroviral therapy, and the general features of the latent HIV reservoir. Then, the article is built on three main pillars: The molecular mechanisms related to latency, the different strategies for targeting the reservoir to obtain a cure, and the current progress in immunotherapy to counteract said reservoirs.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Latencia del Virus , Linfocitos T CD4-Positivos , Replicación Viral
7.
Front Mol Biosci ; 10: 1204273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457832

RESUMEN

How the human body reacts to the exposure of HIV-1 is an important research goal. Frequently, HIV exposure leads to infection, but some individuals show natural resistance to this infection; they are known as HIV-1-exposed but seronegative (HESN). Others, although infected but without antiretroviral therapy, control HIV-1 replication and progression to AIDS; they are named controllers, maintaining low viral levels and an adequate count of CD4+ T lymphocytes. Biological mechanisms explaining these phenomena are not precise. In this context, metabolomics emerges as a method to find metabolites in response to pathophysiological stimuli, which can help to establish mechanisms of natural resistance to HIV-1 infection and its progression. We conducted a cross-sectional study including 30 HESN, 14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples (directly and deproteinized) were analyzed through Nuclear Magnetic Resonance (NMR) metabolomics to find biomarkers and altered metabolic pathways. The metabolic profile analysis of progressors, controllers and HESN demonstrated significant differences with healthy controls when a discriminant analysis (PLS-DA) was applied. In the discriminant models, 13 metabolites associated with HESN, 14 with progressors and 12 with controllers were identified, which presented statistically significant mean differences with healthy controls. In progressors, the metabolites were related to high energy expenditure (creatinine), mood disorders (tyrosine) and immune activation (lipoproteins), phenomena typical of the natural course of the infection. In controllers, they were related to an inflammation-modulating profile (glutamate and pyruvate) and a better adaptive immune system response (acetate) associated with resistance to progression. In the HESN group, with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects which constitute a protective profile in the sexual transmission of HIV. Concerning the significant metabolites of each group, we identified 24 genes involved in HIV-1 replication or virus proteins that were all altered in progressors but only partially in controllers and HESN. In summary, our results indicate that exposure to HIV-1 in HESN, as well as infection in progressors and controllers, affects the metabolism of individuals and that this affectation can be determined using NMR metabolomics.

8.
Heliyon ; 9(6): e17481, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37441388

RESUMEN

Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.

9.
Front Immunol ; 14: 1161135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180105

RESUMEN

Introduction: In the last decades, a decrease in air quality has been observed, mainly associated with anthropogenic activities. Air pollutants, including particulate matter (PM), have been associated with adverse effects on human health, such as exacerbation of respiratory diseases and infections. High levels of PM in the air have recently been associated with increased morbidity and mortality of COVID-19 in some regions of the world. Objective: To evaluate the effect of coarse particulate matter (PM10) on the inflammatory response and viral replication triggered by SARS-CoV-2 using in vitro models. Methods: Peripheral blood mononuclear cells (PBMC) from healthy donors were treated with PM10 and subsequently exposed to SARS-CoV-2 (D614G strain, MOI 0.1). The production of pro-inflammatory cytokines and antiviral factors was quantified by qPCR and ELISA. In addition, using the A549 cell line, previously exposed to PM, the viral replication was evaluated by qPCR and plaque assay. Results: SARS-CoV-2 stimulation increased the production of pro-inflammatory cytokines in PBMC, such as IL-1ß, IL-6 and IL-8, but not antiviral factors. Likewise, PM10 induced significant production of IL-6 in PBMCs stimulated with SARS-CoV-2 and decreased the expression of OAS and PKR. Additionally, PM10 induces the release of IL-1ß in PBMC exposed to SARS-CoV-2 as well as in a co-culture of epithelial cells and PBMCs. Finally, increased viral replication of SARS-CoV-2 was shown in response to PM10. Conclusion: Exposure to coarse particulate matter increases the production of pro-inflammatory cytokines, such as IL-1ß and IL-6, and may alter the expression of antiviral factors, which are relevant for the immune response to SARS-CoV-2. These results suggest that pre-exposure to air particulate matter could have a modest role in the higher production of cytokines and viral replication during COVID-19, which eventually could contribute to severe clinical outcomes.


Asunto(s)
COVID-19 , Citocinas , Humanos , Citocinas/metabolismo , SARS-CoV-2/metabolismo , Leucocitos Mononucleares/metabolismo , Interleucina-6/metabolismo , Material Particulado/efectos adversos , Antivirales
10.
Biomedica ; 43(1): 121-130, 2023 03 30.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37167462

RESUMEN

INTRODUCTION: It has been shown that the transmission of SARS-CoV-2 occurs mainly by air, and the risk of infection is greater in closed spaces. OBJECTIVE: To describe the epidemiology, virology and molecular characterization of a COVID-19 outbreak at a closed vaccination point during the third wave of SARS-CoV-2 in Colombia. MATERIALS AND METHODS: Diagnostic tests, interviews, sampling, cell cultures and viral sequencing were carried out, the latter being molecular characterization and lineage identification. RESULTS: Seven workers were positive for SARS-CoV-2; among these, 3 samples were analyzed, plus an additional sample belonging to the mother of the presumed index case; all samples were identified with lineage B.1.625, with a maximum of 2 nucleotides difference between them. CONCLUSIONS: Variant B.1.625 was identified as the cause of the COVID-19 outbreak, and a co-worker was also identified as the index case. Unexpectedly, attending a vaccination day became a risk factor for acquiring the infection.


Introducción. Se ha demostrado que la transmisión de SARS-CoV-2 se produce principalmente por vía aérea y el riesgo de infección es mayor en espacios cerrados con alta concentración de personas; este último factor se presentó en algunos de los puestos de vacunación de la ciudad de Medellín. Objetivo. Describir la epidemiología, virología y caracterización molecular de un brote de COVID-19 en un punto de vacunación cerrado durante la tercera ola de SARS-CoV-2 en Colombia. Materiales y métodos. Se realizaron test diagnósticos, entrevistas, toma de muestras, aislamiento viral y secuenciación genómica. Con esta última, se hizo la caracterización molecular y se identificó el linaje. Resultados. Siete trabajadores fueron positivos para SARS-CoV-2, y de estos, tres muestras fueron secuenciadas, más una muestra adicional perteneciente a la madre del presunto caso índice. Todas las muestras fueron identificadas con el linaje B.1.625, con un máximo de dos nucleótidos de diferencia entre ellas. Conclusiones. Se identificó la variante B.1.625 como la causante del brote de COVID-19, y también un compañero de trabajo fue identificado como el caso índice. De forma imprevista, asistir a una jornada de vacunación se convirtió en un factor de riesgo para adquirir la infección.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Prueba de COVID-19 , Brotes de Enfermedades , Vacunación
11.
AIMS Microbiol ; 9(1): 20-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891537

RESUMEN

Background: Drug repurposing is a valuable strategy for rapidly developing drugs for treating COVID-19. This study aimed to evaluate the antiviral effect of six antiretrovirals against SARS-CoV-2 in vitro and in silico. Methods: The cytotoxicity of lamivudine, emtricitabine, tenofovir, abacavir, efavirenz and raltegravir on Vero E6 was evaluated by MTT assay. The antiviral activity of each of these compounds was evaluated via a pre-post treatment strategy. The reduction in the viral titer was assessed by plaque assay. In addition, the affinities of the antiretroviral interaction with viral targets RdRp (RNA-dependent RNA polymerase), ExoN-NSP10 (exoribonuclease and its cofactor, the non-structural protein 10) complex and 3CLpro (3-chymotrypsin-like cysteine protease) were evaluated by molecular docking. Results: Lamivudine exhibited antiviral activity against SARS-CoV-2 at 200 µM (58.3%) and 100 µM (66.7%), while emtricitabine showed anti-SARS-CoV-2 activity at 100 µM (59.6%), 50 µM (43.4%) and 25 µM (33.3%). Raltegravir inhibited SARS-CoV-2 at 25, 12.5 and 6.3 µM (43.3%, 39.9% and 38.2%, respectively). The interaction between the antiretrovirals and SARS-CoV-2 RdRp, ExoN-NSP10 and 3CLpro yielded favorable binding energies (from -4.9 kcal/mol to -7.7 kcal/mol) using bioinformatics methods. Conclusion: Lamivudine, emtricitabine and raltegravir showed in vitro antiviral effects against the D614G strain of SARS-CoV-2. Raltegravir was the compound with the greatest in vitro antiviral potential at low concentrations, and it showed the highest binding affinities with crucial SARS-CoV-2 proteins during the viral replication cycle. However, further studies on the therapeutic utility of raltegravir in patients with COVID-19 are required.

12.
Biomédica (Bogotá) ; 43(1): 121-130, mar. 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1533912

RESUMEN

Introduction: It has been shown that the transmission of SARS-CoV-2 occurs mainly by air, and the risk of infection is greater in closed spaces. Objective: To describe the epidemiology, virology and molecular characterization of a COVID-19 outbreak at a closed vaccination point during the third wave of SARS-CoV-2 in Colombia. Materials and methods: Diagnostic tests, interviews, sampling, cell cultures and viral sequencing were carried out, the latter being molecular characterization and lineage identification. Results: Seven workers were positive for SARS-CoV-2; among these, 3 samples were analyzed, plus an additional sample belonging to the mother of the presumed index case; all samples were identified with lineage B.1.625, with a maximum of 2 nucleotides difference between them. Conclusions: Variant B.1.625 was identified as the cause of the COVID-19 outbreak, and a co-worker was also identified as the index case. Unexpectedly, attending a vaccination day became a risk factor for acquiring the infection.


Introducción. Se ha demostrado que la transmisión de SARS-CoV-2 se produce principalmente por vía aérea y el riesgo de infección es mayor en espacios cerrados con alta concentración de personas; este último factor se presentó en algunos de los puestos de vacunación de la ciudad de Medellín. Objetivo. Describir la epidemiología, virología y caracterización molecular de un brote de COVID-19 en un punto de vacunación cerrado durante la tercera ola de SARS-CoV-2 en Colombia. Materiales y métodos. Se realizaron test diagnósticos, entrevistas, toma de muestras, aislamiento viral y secuenciación genómica. Con esta última, se hizo la caracterización molecular y se identificó el linaje. Resultados. Siete trabajadores fueron positivos para SARS-CoV-2, y de estos, tres muestras fueron secuenciadas, más una muestra adicional perteneciente a la madre del presunto caso índice. Todas las muestras fueron identificadas con el linaje B.1.625, con un máximo de dos nucleótidos de diferencia entre ellas. Conclusiones. Se identificó la variante B.1.625 como la causante del brote de COVID-19, y también un compañero de trabajo fue identificado como el caso índice. De forma imprevista, asistir a una jornada de vacunación se convirtió en un factor de riesgo para adquirir la infección.


Asunto(s)
Brotes de Enfermedades , SARS-CoV-2 , Vacunación , Colombia , COVID-19
13.
Heliyon ; 9(1): e13045, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685472

RESUMEN

For the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, clinical manifestations are broad and highly heterogeneous for both sexes. We aimed to determine how biological sex and age impact immune gene expression, particularly influencing the humoral neutralizing antibody (NAb) response and the cytokine production in coronavirus disease 2019 (COVID-19) subjects. The immune gene expression, according to biological sex and age, was assessed using the genome wide expression profile of blood proteins from healthy individuals using the Genotype Tissue Expression (GTEx) database. Moreover, anti-SARS-CoV-2 neutralizing antibody titers and cytokine levels were determined in blood samples from 141 COVID-19 individuals from Medellín, Colombia. Among subjects with COVID-19, males had statistically significantly higher median NAb titers and serum concentrations of interleukin-6 and CC chemokine ligand 3 than females. Overall, our findings point out a more robust innate immune response in women that could help recognize and restrain the virus faster than in men.

14.
Front Immunol ; 13: 1007068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451829

RESUMEN

Background: The COVID-19 pandemic remains a global health problem. As in other viral infections, the humoral immune response against SARS-CoV-2 is thought to be crucial for controlling the infection. However, the dynamic of B cells in the clinical spectrum of this disease is still controversial. This study aimed to characterize B cell subsets and neutralizing responses in COVID-19 patients according to disease severity through a one-month follow-up. Methods: A cohort of 71 individuals with SARS-CoV-2 infection confirmed by RT-PCR were recruited and classified into four groups: i) asymptomatic; ii) symptomatic outpatients; iii) hospitalized in ward, and iv) intensive care unit patients (ICU). Samples were taken at days 0 (inclusion to the study), 7 and 30. B cell subsets and neutralizing antibodies were assessed using multiparametric flow cytometry and plaque reduction neutralization, respectively. Results: Older age, male gender and body mass index over 25 were common factors among hospitalized and ICU patients, compared to those with milder clinical presentations. In addition, those requiring hospitalization had more comorbidities. A significant increase in the frequencies of CD19+ cells at day 0 was observed in hospitalized and ICU patients compared to asymptomatic and symptomatic groups. Likewise, the frequency of plasmablasts was significantly increased at the first sample in the ICU group compared to the asymptomatic group, but then waned over time. The frequency of naïve B cells decreased at days 7 and 30 compared to day 0 in hospitalized and ICU patients. The neutralizing antibody titers were higher as the severity of COVID-19 increased; in asymptomatic individuals, it was strongly correlated with the percentage of IgM+ switched memory B cells, and a moderate correlation was found with plasmablasts. Conclusion: The humoral immune response is variable among SARS-CoV-2 infected people depending on the severity and time of clinical evolution. In severe COVID-19 patients, a higher plasmablast frequency and neutralizing antibody response were observed, suggesting that, despite having a robust humoral immunity, this response could be late, having a low impact on disease outcome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Inmunidad Humoral , Pandemias , Anticuerpos Neutralizantes
15.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 40(8): 428-435, Oct. 2022. tab, graf
Artículo en Español | IBECS | ID: ibc-210272

RESUMEN

Introducción: El estándar de diagnóstico para SARS-CoV-2 es la reacción en cadena de la polimerasa (PCR). La Organización Mundial de la Salud recomendó el protocolo de Charité-Berlín para el diagnóstico de COVID-19; esta metodología implica tres PCR, limitando la capacidad de procesamiento y retrasando los resultados. Con el fin de reducir estas limitaciones, se validó una PCR dúplex para la detección del gen E y RNasa P. Métodos: Se comparó el límite de detección, sensibilidad y especificidad de la técnica de PCR dúplex (gen E más RNasa P), comparada contra el estándar monoplex (gen E), en muestras de ARN de un aislado de SARS-CoV-2 y de 88 especímenes clínicos, con resultados previamente conocidos. Se determinó la repetibilidad y reproducibilidad de los valores de ciclos umbrales (cycle threshold [Ct]), en dos laboratorios independientes de la Facultad de Medicina de la Universidad de Antioquia, usando reactivos y equipos diferentes. Resultados: No hay diferencias significativas (p = 0,84) en los resultados de Ct entre ambas estrategias. Al utilizar como referencia el gen E amplificado en monoplex, el análisis de concordancia demostró fuerte similitud entre las dos estrategias, con un coeficiente kappa de Cohen de 0,89, una sensibilidad del 90%, y una especificidad del 87%. Conclusión: La PCR dúplex no afecta la sensibilidad y especificidad informadas por el protocolo Charité, Berlín, siendo una herramienta útil para el cribado de SARS-CoV-2 en muestras clínicas.(AU)


Introduction: Reverse transcriptase - polymerase chain reaction (RT-PCR) is the standard technique for SARS-CoV-2 diagnosis. The World Health Organization recommends the Charité-Berlin protocol for COVID-19 diagnosis, which requires triple PCR, limiting the process capability of laboratories and delaying the results. In order to reduce these limitations, a duplex PCR is validated for the detection of the E and RNase P genes. Methods: We compared the limit of detection, sensitivity and specificity of the duplex PCR technique (E gene and RNase P) against the monoplex standard (E gene) in RNA samples from a SARS-CoV-2 isolate and 88 clinical specimens with previously known results. The repeatability and reproducibility of the threshold cycle values (Ct) were determined in two independent laboratories of the Faculty of Medicine of the Universidad de Antioquia, using different reagents and real time instruments. Results: There were no significant differences in the Ct results between both techniques (p = 0.84). Using the monoplex PCR of E gene as a reference, the interrater reliability analysis showed similarity between the two techniques, with a kappa coefficient of 0.89, the sensitivity and the specificity of duplex PCR were 90% and 87%, respectively. Conclusions: Duplex PCR does not affect the sensitivity and specificity reported by the Charité, Berlin protocol, being a useful tool for SARS-CoV-2 screening in clinical samples.(AU)


Asunto(s)
Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Infecciones por Coronavirus/epidemiología , Betacoronavirus , Genes sry , Ribonucleasa Pancreática , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Diagnóstico , Tamizaje Masivo , Enfermedades Transmisibles , Organización Mundial de la Salud , Microbiología , Colombia
16.
AIDS Res Ther ; 19(1): 42, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104716

RESUMEN

BACKGROUND: Although combined antiretroviral therapy (cART) has decreased the mortality associated with HIV infection, complete immune reconstitution is not achieved despite viral suppression. Alterations of CD8+ T cells and some of their subpopulations, such as interleukin (IL)-17-producing cells, are evidenced in treated individuals and are associated with systemic inflammation and adverse disease outcomes. We sought to evaluate if different CD8+ T cell subsets are differentially normalized during a clinical follow-up of people living with HIV (PLWH) receiving suppressive cART. METHODS: We explored the changes in the frequencies, activation/exhaustion phenotypes (HLA-DR, CD38, PD-1, and TIM-3), and function (total and HIV-specific cells expressing CD107a, perforin, granzyme B, interferon [IFN]-γ and IL-17) of CD8+ T cells from early-treated PLWH receiving cART in a 1-year follow-up, using a multidimensional flow cytometry approach. RESULTS: Despite continuous cART-induced viral suppression and recovery of CD4+ T cells, after a 1-year follow-up, the CD8+ T cell counts, CD4:CD8 ratio, PD-1 expression, and IL-17 production by CD8+ T cells exhibited incomplete normalization compared with seronegative controls. However, the proportion of CD8+ T cells with an exhausted phenotype (co-expressing PD-1 andTIM-3), and cells co-expressing cytotoxic molecules (Perforin and Granzyme B), reached normalization. CONCLUSIONS: Although suppressive cART achieves normalization of CD4+ T cell counts, only particular subsets of CD8+ T cells are more rapidly normalized in PLWH receiving cART, which could be routinely used as biomarkers for therapy efficiency in these patients.


Asunto(s)
Infecciones por VIH , Linfocitos T CD8-positivos , Granzimas/metabolismo , Granzimas/uso terapéutico , Humanos , Interleucina-17/metabolismo , Interleucina-17/uso terapéutico , Perforina/metabolismo , Perforina/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/uso terapéutico , Subgrupos de Linfocitos T
17.
Front Med (Lausanne) ; 9: 991873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160152

RESUMEN

Background: It has been proposed that polyphenols can be used in the development of new therapies against COVID-19, given their ability to interfere with the adsorption and entrance processes of the virus, thus disrupting viral replication. Seeds from Caesalpinia spinosa, have been traditionally used for the treatment of inflammatory pathologies and respiratory diseases. Our team has obtained an extract called P2Et, rich in polyphenols derived from gallic acid with significant antioxidant activity, and the ability to induce complete autophagy in tumor cells and reduce the systemic inflammatory response in animal models. Methods: In this work, a phase II multicenter randomized double-blind clinical trial on COVID-19 patients was designed to evaluate the impact of the P2Et treatment on the clinical outcome and the immunological parameters related to the evolution of the disease. The Trial was registered with the number No. NCT04410510*. A complementary study in an animal model of lung fibrosis was carried out to evaluate in situ lung changes after P2Et in vivo administration. The ability of P2Et to inhibit the viral load of murine and human coronaviruses in cellular models was also evaluated. Results: Patients treated with P2Et were discharged on average after 7.4 days of admission vs. 9.6 days in the placebo group. Although a decrease in proinflammatory cytokines such as G-CSF, IL-15, IL-12, IL-6, IP10, MCP-1, MCP-2 and IL-18 was observed in both groups, P2Et decreased to a greater extent G-CSF, IL-6 and IL-18 among others, which are related to lower recovery of patients in the long term. The frequency of T lymphocytes (LT) CD3+, LT double negative (CD3+CD4-CD8-), NK cells increased in the P2Et group where the population of eosinophils was also significantly reduced. In the murine bleomycin model, P2Et also reduced lung inflammation and fibrosis. P2Et was able to reduce the viral replication of murine and human coronaviruses in vitro, showing its dual antiviral and anti-inflammatory role, key in disease control. Conclusions: Taken together these results suggest that P2Et could be consider as a good co-adjuvant in the treatment of COVID-19. Clinical trail registration: https://clinicaltrials.gov/ct2/show/NCT04410510, identifier: NCT04410510.

18.
PLoS One ; 17(7): e0269932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35802715

RESUMEN

Dendritic cells (DCs) promote HIV-1 transmission by acting as Trojan horses, capturing viral particles, facilitating the infection of CD4+ T-cells. Vitamin D (VitD) has shown to decrease T cell activation, reducing susceptibility to HIV-1 infection of CD4+ T-cells in vitro; however, if VitD decreases viral transfer from DCs to CD4+ T-cells is unknown. In this study, we co-cultured HIV-1-pulsed immature and LPS mature monocytes-derived DCs (iDCs and LmDCs, respectively), differentiated in presence or absence of calcitriol (VitD active form), with PHA-activated autologous CD4+ T-cells from 16 healthy donors. In co-cultures of iDCs and LmDCs treated with calcitriol, there was a significant decrease in frequency of infected CD4+ T-cells, evaluated by flow cytometry. However, p24 levels evaluated by ELISA were not significantly reduced in culture supernatants. Moreover, calcitriol-treated iDCs exhibited decreased expression of genes involved in HIV-1 transfer compared to the control. Both, calcitriol-treated iDCs and LmDCs exhibit a similar gene expression profile, probably related to a transcriptional balance achieved after long treatment with calcitriol. Since calcitriol-differentiated DCs express on their surface a lower amount of DC-SIGN and SIGLEC-1 molecules, widely associated with HIV-1 transfer, suggesting that this mechanism contributes to a lower transfer of viral particles by the DCs.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD4-Positivos , Calcitriol/farmacología , Moléculas de Adhesión Celular , Células Cultivadas , Células Dendríticas , Infecciones por VIH/prevención & control , VIH-1/fisiología , Humanos , Lectinas Tipo C , Monocitos , Receptores de Superficie Celular , Lectina 1 Similar a Ig de Unión al Ácido Siálico
19.
Biomedica ; 42(2): 239-241, 2022 06 01.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35867925

RESUMEN

Introduction: HIV-1 infection induces a chronic inflammatory state in which inflammasomes participate. The increase in inflammatory parameters is higher in individuals with active viral replication (progressors) than in those with viral control (HIV-1 controllers). This process triggers metabolic alterations related to changes in the lipid profile, which could increase the risk of cardiovascular events, even in patients with antiretroviral therapy. Objective: To establish whether there was a correlation between the expression of inflammasome components and cardiovascular risk markers in HIV-1 controllers and progressors with or without antiretroviral therapy. Materials and methods: We studied 13 HIV-1 controllers and 40 progressors (19 without antiretroviral therapy and 31 with therapy) and evaluated in them classic markers of cardiovascular risk. Using RT-PCR we quantified the expression of inflammasome components (NLRP1, NLRP3, NLRC4, AIM2, ASC, IL-1ß, IL-18, and caspase-1), TLR2, TLR4, TGF-ß, and IL-10. Results: Progressors with antiretroviral therapy had an increased expression of TLR2, TLR4, and IL-18 compared to HIV-1 controllers. They also showed high levels of triglycerides and VLDL, which positively correlated with the expression of the inflammasome components NLRP1, NLRP3, NLRC4, AIM2, ASC, and caspase-1. Conclusion: Progressors receiving antiretroviral therapy exhibited an increased expression of the inflammasome components, which correlated with the levels of triglycerides and VLDL. This supports the role of inflammation in cardiovascular risk during HIV-1 infection.


Introducción. La infección por el HIV-1 induce un estado de inflamación crónico en el que participan los inflamasomas. El incremento de los parámetros inflamatorios es mayor en individuos con replicación viral activa que en aquellos con control de la replicación viral. Este proceso desencadena alteraciones metabólicas relacionadas con cambios en el perfil lipídico, lo cual podría incrementar el riesgo de eventos cardiovasculares, incluso en pacientes con terapia antirretroviral. Objetivo. Establecer si existe correlación entre la expresión de los componentes de los inflamasomas y los marcadores de riesgo cardiovascular en individuos con control de la replicación viral y en aquellos con replicación viral activa con terapia antirretroviral o sin ella. Materiales y métodos. Se estudiaron 13 individuos con control de la replicación viral y 40 con replicación viral activa (19 sin terapia antirretroviral y 31 con terapia). Se evaluaron los marcadores clásicos de riesgo cardiovascular y se cuantificó mediante RT-PCR la expresión de los componentes de los inflamasomas (NLRP1, NLRP3, NLRC4, AIM2, ASC, IL-1ß, IL-18 y caspasa-1), TLR2, TLR4, TGF-ß e IL-10. Resultados. Se observó que los pacientes con replicación viral activa y con terapia antirretroviral presentaron un incremento en la expresión de TLR2, TLR4 e IL-18, comparados con los controladores del HIV-1. Además, mostraron grandes valores de triglicéridos y lipoproteína de muy baja densidad (Very Low Density Lipopretein, VLDL), lo que se correlaciona positivamente con la expresión de los componentes de los inflamasomas NLRP1, NLRP3, NLRC4, AIM2, ASC y caspasa-1. Conclusión. El aumento en la expresión de los componentes de los inflamasomas en los individuos con replicación viral activa y con terapia antirretroviral se correlacionó con las concentraciones de triglicéridos y VLDL, lo que sugiere el papel de la activación inmunitaria y la terapia antirretroviral en el riesgo cardiovascular.


Asunto(s)
VIH-1 , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR , Estudios Retrospectivos , Receptor Toll-Like 2 , Receptor Toll-Like 4
20.
Front Immunol ; 13: 859905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693819

RESUMEN

Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing ß-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRß1* (HLA-DRß1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRß1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.


Asunto(s)
COVID-19 , Vacunas contra la Malaria , Secuencia de Aminoácidos , Vacunas contra la COVID-19 , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Imidazoles , Péptidos , SARS-CoV-2/genética , Sulfonamidas , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA