Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Blood ; 143(4): 342-356, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37922495

RESUMEN

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Asunto(s)
Megacariocitos , Complejo GPIb-IX de Glicoproteína Plaquetaria , Trombocitopenia , Animales , Humanos , Ratones , Plaquetas/metabolismo , Citoplasma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Megacariocitos/metabolismo , Morfogénesis , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo
2.
Nat Cardiovasc Res ; 2(4): 368-382, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37206993

RESUMEN

The activation of platelets and coagulation at vascular injury sites is crucial for haemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial haemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP) V is cleaved by thrombin. We demonstrate with genetic and pharmacological approaches that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation, but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in haemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve haemostasis.

3.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409883

RESUMEN

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Asunto(s)
Ataxias Espinocerebelosas , Trombocitopenia , Trombosis , Tirosina-ARNt Ligasa , Virosis , Ratones , Animales , Trombopoyesis , Ratones Transgénicos
4.
Sci Signal ; 15(722): eabb0384, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35192415

RESUMEN

Bleeding correlates with disease severity in viral hemorrhagic fevers. We found that the increase in type I interferon (IFN-I) in mice caused by infection with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV; an arenavirus) reduced the megakaryocytic expression of genes encoding enzymes involved in lipid biosynthesis (cyclooxygenase 1 and thromboxane A synthase 1) and a thrombopoietic transcription factor (Nf-e2). The decreased expression of these genes was associated with reduced numbers of circulating platelets and defects in the arachidonic acid synthetic pathway, thereby suppressing serotonin release from δ-granules in platelets. Bleeding resulted when severe thrombocytopenia and altered platelet function reduced the amount of platelet-derived serotonin below a critical threshold. Bleeding was facilitated by the absence of the activity of the kinase Lyn or the administration of aspirin, an inhibitor of arachidonic acid synthesis. Mouse platelets were not directly affected by IFN-I because they lack the receptor for the cytokine (IFNAR1), suggesting that transfusion of normal platelets into LCMV-infected mice could increase the amount of platelet-released serotonin and help to control hemorrhage.


Asunto(s)
Coriomeningitis Linfocítica , Animales , Plaquetas/metabolismo , Hemorragia/metabolismo , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/metabolismo , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Serotonina/metabolismo
5.
Haematologica ; 107(9): 2133-2143, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142156

RESUMEN

Type 2B von Willebrand disease (VWD) is caused by gain-of-function mutations in von Willebrand factor (VWF). Increased VWF affinity for GPIba results in loss of high molecular weight multimers and enhanced platelet clearance, both contributing to the bleeding phenotype. Severity of the symptoms vary among type 2B VWD patients, with some developing thrombocytopenia only under stress conditions. Efforts have been made to study underlying pathophysiology for platelet abnormalities, but animal studies have been limited because of species specificity in the VWF-GPIba interaction. Here, we generated a severe form of type 2B VWD (p.V1316M) knockin mice in the context of human VWF exon 28 (encoding A1 and A2 domains) and crossed them with human GPIba transgenic strain. Heterozygous mutant mice recapitulated the phenotype of type 2B VWD in autosomal dominant manner and presented severe macrothrombocytopenia. Of note, platelets remaining in the circulation had extracytoplasmic GPIba shed-off from the cell surface. Reciprocal bone marrow transplantation determined mutant VWF produced from endothelial cells as the major cause of the platelet phenotype in type 2B VWD mice. Moreover, altered megakaryocyte maturation in the bone marrow and enhanced extramedullary megakaryopoiesis in the spleen were observed. Interestingly, injection of anti-VWF A1 blocking antibody (NMC-4) not only ameliorated platelet count and GPIba expression, but also reversed MK ploidy shift. In conclusion, we present a type 2B VWD mouse model with humanized VWF-GPIba interaction which demonstrated direct influence of aberrant VWF-GPIba binding on megakaryocytes.


Asunto(s)
Trombocitopenia , Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Animales , Plaquetas/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/metabolismo , Enfermedad de von Willebrand Tipo 2/genética , Enfermedades de von Willebrand/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
6.
Nat Immunol ; 22(11): 1352-1353, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686863

Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
7.
Res Pract Thromb Haemost ; 4(7): 1167-1177, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134783

RESUMEN

BACKGROUND: Tyrosyl-tRNA synthetase (YRS) belongs to the family of enzymes that catalyzes the tRNA aminoacylation reaction for protein synthesis, and it has been recently shown to exert noncanonical functions. Although database results indicate extremely low levels of YRS mRNA in platelets, YRS protein is abundantly present. The source of YRS in platelets, as well as the physiological role of platelet-stored YRS, remains largely unknown. OBJECTIVES: To clarify how YRS accumulates in platelets and determine the potential role of platelet-stored YRS. METHODS: Recombinant YRS proteins with epitope tags were prepared and tested in vitro for proteolytic cleavage in human plasma. Fluorescent-labeled YRS was examined for uptake by platelets, as demonstrated by western blotting and confocal microscopy analysis. Using RAW-Dual reporter cells, Toll-like receptor and type I interferon activation pathways were analyzed after treatment with YRS. RESULTS: Full-length YRS was cleaved by both elastase and matrix metalloproteinases in the plasma. The cleaved, N-terminal YRS fragment corresponds to the endogenous YRS detected in platelet lysate by western blotting. Both full-length and cleaved forms of YRS were taken up by platelets in vitro and stored in the α-granules. The N-terminal YRS fragment generated by proteolytic cleavage had monocyte activation comparable to that of the constitutive-active mutant YRS (YRSY341A) previously reported. CONCLUSION: Platelets take up both full-length YRS and the active form of cleaved YRS fragment from the plasma. The cleaved, N-terminal YRS fragment stored in α-granules may have potential to activate monocytes.

8.
Blood ; 135(25): 2292-2301, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32157300

RESUMEN

Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by antibody-mediated platelet destruction. Different mechanisms have been suggested to explain accelerated platelet clearance and impaired thrombopoiesis, but the pathophysiology of ITP has yet to be fully delineated. In this study, we tested 2 mouse models of immune-mediated thrombocytopenia using the rat anti-mouse GPIbα monoclonal antibody 5A7, generated in our laboratory. After a single IV administration of high-dose (2 mg/kg) 5A7, opsonized platelets were rapidly cleared from the circulation into the spleen and liver; this was associated with rapid upregulation of thrombopoietin (TPO) messenger RNA. In contrast, subcutaneous administration of low-dose 5A7 (0.08-0.16 mg/kg) every 3 days gradually lowered the platelet count; in this case, opsonized platelets were observed only in the spleen, and TPO levels remained unaltered. Interestingly, in both models, the 5A7 antibody was found on the surface of, as well as internalized to, bone marrow megakaryocytes. Consequently, platelets generated in the chronic phase of repeated subcutaneous 5A7 administration model showed reduced GPIbα membrane expression on their surface. Our findings indicate that evaluation of platelet surface GPIbα relative to platelet size may be a useful marker to support the diagnosis of anti-GPIbα antibody-induced ITP.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Complejo GPIb-IX de Glicoproteína Plaquetaria/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/toxicidad , Reacciones Antígeno-Anticuerpo , Plaquetas/inmunología , Modelos Animales de Enfermedad , Inyecciones Intravenosas , Inyecciones Subcutáneas , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Opsoninas/inmunología , Agregación Plaquetaria/inmunología , Complejo GPIb-IX de Glicoproteína Plaquetaria/antagonistas & inhibidores , Púrpura Trombocitopénica Idiopática/etiología , ARN Mensajero/biosíntesis , Ratas , Bazo/patología , Trombopoyetina/biosíntesis , Trombopoyetina/genética , Regulación hacia Arriba
9.
Arterioscler Thromb Vasc Biol ; 40(4): 901-913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102568

RESUMEN

OBJECTIVE: Cardiac myosin (CM) is structurally similar to skeletal muscle myosin, which has procoagulant activity. Here, we evaluated CM's ex vivo, in vivo, and in vitro activities related to hemostasis and thrombosis. Approach and Results: Perfusion of fresh human blood over CM-coated surfaces caused thrombus formation and fibrin deposition. Addition of CM to blood passing over collagen-coated surfaces enhanced fibrin formation. In a murine ischemia/reperfusion injury model, exogenous CM, when administered intravenously, augmented myocardial infarction and troponin I release. In hemophilia A mice, intravenously administered CM reduced tail-cut-initiated bleeding. These data provide proof of concept for CM's in vivo procoagulant properties. In vitro studies clarified some mechanisms for CM's procoagulant properties. Thrombin generation assays showed that CM, like skeletal muscle myosin, enhanced thrombin generation in human platelet-rich and platelet-poor plasmas and also in mixtures of purified factors Xa, Va, and prothrombin. Binding studies showed that CM, like skeletal muscle myosin, directly binds factor Xa, supporting the concept that the CM surface is a site for prothrombinase assembly. In tPA (tissue-type plasminogen activator)-induced plasma clot lysis assays, CM was antifibrinolytic due to robust CM-dependent thrombin generation that enhanced activation of TAFI (thrombin activatable fibrinolysis inhibitor). CONCLUSIONS: CM in vitro is procoagulant and prothrombotic. CM in vivo can augment myocardial damage and can be prohemostatic in the presence of bleeding. CM's procoagulant and antifibrinolytic activities likely involve, at least in part, its ability to bind factor Xa and enhance thrombin generation. Future work is needed to clarify CM's pathophysiology and its mechanistic influences on hemostasis or thrombosis.


Asunto(s)
Coagulación Sanguínea , Miosinas Cardíacas/metabolismo , Hemostasis , Trombina/biosíntesis , Trombosis/fisiopatología , Animales , Plaquetas/metabolismo , Miosinas Cardíacas/fisiología , Modelos Animales de Enfermedad , Factor Va/metabolismo , Factor Xa/metabolismo , Hemorragia/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Protrombina/metabolismo
10.
Blood Adv ; 2(19): 2522-2532, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30287479

RESUMEN

The interaction of platelet glycoprotein Ibα (GPIbα) with von Willebrand factor (VWF) initiates hemostasis after vascular injury and also contributes to pathological thrombosis. GPIbα binding to the VWF A1 domain (VWFA1) is a target for antithrombotic intervention, but attempts to develop pharmacologic inhibitors have been hindered by the lack of animal models because of the species specificity of the interaction. To address this problem, we generated a knockin mouse with Vwf exon 28-encoding domains A1 and A2 replaced by the human homolog (VWFh28). VWFh28 mice (M1HA) were crossbred with a transgenic mouse strain expressing human GPIbα on platelets (mGPIbαnull;hGPIbαTg; H1MA) to generate a new strain (H1HA) with humanized GPIbα-VWFA1 binding. Plasma VWF levels in the latter 3 strains were similar to those of wild-type mice (M1MA). Compared with the strains that had homospecific GPIbα-VWF pairing (M1MA and H1HA), M1HA mice of those with heterospecific pairing had a markedly greater prolongation of tail bleeding time and attenuation of thrombogenesis after injury to the carotid artery than H1MA mice. Measurements of GPIbα-VWFA1 binding affinity by surface plasmon resonance agreed with the extent of observed functional defects. Ristocetin-induced platelet aggregation was similar in H1HA mouse and human platelet-rich plasma, and it was comparably inhibited by monoclonal antibody NMC-4, which is known to block human GPIbα-VWFA1 binding, which also inhibited FeCl3-induced mouse carotid artery thrombosis. Thus, the H1HA mouse strain is a fully humanized model of platelet GPIbα-VWFA1 binding that provides mechanistic and pharmacologic information relevant to human hemostatic and thrombotic disorders.


Asunto(s)
Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Factor de von Willebrand/metabolismo , Animales , Biomarcadores , Plaquetas/metabolismo , Cruzamientos Genéticos , Exones , Hemostasis , Humanos , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Trombosis/etiología , Trombosis/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/genética
11.
Nat Commun ; 9(1): 3608, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190457

RESUMEN

Platelet αIIbß3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet ß3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbß3 integrin, and the direct apoA-IV-αIIbß3 interaction can be detected using a single-molecule Biomembrane Force Probe. We identify that aspartic acids 5 and 13 at the N-terminus of apoA-IV are required for binding to αIIbß3 integrin, which is additionally modulated by apoA-IV C-terminus via intra-molecular interactions. ApoA-IV inhibits platelet aggregation and postprandial platelet hyperactivity. Human apoA-IV plasma levels show a circadian rhythm that negatively correlates with platelet aggregation and cardiovascular events. Thus, we identify apoA-IV as a novel ligand of αIIbß3 integrin and an endogenous inhibitor of thrombosis, establishing a link between lipoprotein metabolism and cardiovascular diseases.


Asunto(s)
Apolipoproteínas A/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/metabolismo , Adulto , Animales , Apolipoproteínas A/genética , Apolipoproteínas A/farmacología , Ácido Aspártico/metabolismo , Sitios de Unión , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Periodo Posprandial , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Trombosis/tratamiento farmacológico
12.
Proc Natl Acad Sci U S A ; 115(35): E8228-E8235, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104364

RESUMEN

New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRSACT), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1+ megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRSACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRSACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRSACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.


Asunto(s)
Plaquetas/metabolismo , Hematopoyesis , Megacariocitos/metabolismo , Poliploidía , Trombocitopenia/metabolismo , Tirosina-ARNt Ligasa/metabolismo , Plaquetas/patología , Técnicas de Cultivo de Célula , Células Cultivadas , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Megacariocitos/patología , Transducción de Señal , Trombocitopenia/patología , Trombopoyetina/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(33): E7814-E7823, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061383

RESUMEN

Understanding of T cell exhaustion and successful therapy to restore T cell function was first described using Clone (Cl) 13 variant selected from the lymphocytic choriomeningitis virus (LCMV) Armstrong (ARM) 53b parental strain. T cell exhaustion plays a pivotal role in both persistent infections and cancers of mice and humans. C57BL/6, BALB, SWR/J, A/J, 129, C3H, and all but one collaborative cross (CC) mouse strain following Cl 13 infection have immunosuppressed T cell responses, high PD-1, and viral titers leading to persistent infection and normal life spans. In contrast, the profile of FVB/N, NZB, PL/J, SL/J, and CC NZO mice challenged with Cl 13 is a robust T cell response, high titers of virus, PD-1, and Lag3 markers on T cells. These mice all die 7 to 9 d after Cl 13 infection. Death is due to enhanced pulmonary endothelial vascular permeability, pulmonary edema, collapse of alveolar air spaces, and respiratory failure. Pathogenesis involves abundant levels of Cl 13 receptor alpha-dystroglycan on endothelial cells, with high viral replication in such cells leading to immunopathologic injury. Death is aborted by blockade of interferon-1 (IFN-1) signaling or deletion of CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos , Interferón Tipo I , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica/fisiología , Replicación Viral/genética , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/patología , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Proteína del Gen 3 de Activación de Linfocitos
14.
Blood ; 132(6): 622-634, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29794068

RESUMEN

Thrombopoietin (TPO), a hematopoietic growth factor produced predominantly by the liver, is essential for thrombopoiesis. Prevailing theory posits that circulating TPO levels are maintained through its clearance by platelets and megakaryocytes via surface c-Mpl receptor internalization. Interestingly, we found a two- to threefold decrease in circulating TPO in GPIbα-/- mice compared with wild-type (WT) controls, which was consistent in GPIbα-deficient human Bernard-Soulier syndrome (BSS) patients. We showed that lower TPO levels in GPIbα-deficient conditions were not due to increased TPO clearance by GPIbα-/- platelets but rather to decreased hepatic TPO mRNA transcription and production. We found that WT, but not GPIbα-/-, platelet transfusions rescued hepatic TPO mRNA and circulating TPO levels in GPIbα-/- mice. In vitro hepatocyte cocultures with platelets or GPIbα-coupled beads further confirm the disruption of platelet-mediated hepatic TPO generation in the absence of GPIbα. Treatment of GPIbα-/- platelets with neuraminidase caused significant desialylation; however, strikingly, desialylated GPIbα-/- platelets could not rescue impaired hepatic TPO production in vivo or in vitro, suggesting that GPIbα, independent of platelet desialylation, is a prerequisite for hepatic TPO generation. Additionally, impaired hepatic TPO production was recapitulated in interleukin-4/GPIbα-transgenic mice, as well as with antibodies targeting the extracellular portion of GPIbα, demonstrating that the N terminus of GPIbα is required for platelet-mediated hepatic TPO generation. These findings reveal a novel nonredundant regulatory role for platelets in hepatic TPO homeostasis, which improves our understanding of constitutive TPO regulation and has important implications in diseases related to GPIbα, such as BSS and auto- and alloimmune-mediated thrombocytopenias.


Asunto(s)
Síndrome de Bernard-Soulier/sangre , Plaquetas/fisiología , Hígado/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Trombopoyetina/biosíntesis , Animales , Síndrome de Bernard-Soulier/genética , Células Cultivadas , Glicosilación , Hepatocitos/metabolismo , Homeostasis , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ácido N-Acetilneuramínico/metabolismo , Transfusión de Plaquetas , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Trombopoyetina/sangre
15.
Blood ; 131(22): 2436-2448, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29622550

RESUMEN

Members of the 14-3-3 family of proteins function as adapters/modulators that recognize phosphoserine/phosphothreonine-based binding motifs in many intracellular proteins and play fundamental roles in signal transduction pathways of eukaryotic cells. In platelets, 14-3-3 plays a wide range of regulatory roles in phosphorylation-dependent signaling pathways, including G-protein signaling, cAMP signaling, agonist-induced phosphatidylserine exposure, and regulation of mitochondrial function. In particular, 14-3-3 interacts with several phosphoserine-dependent binding sites in the major platelet adhesion receptor, the glycoprotein Ib-IX complex (GPIb-IX), regulating its interaction with von Willebrand factor (VWF) and mediating VWF/GPIb-IX-dependent mechanosignal transduction, leading to platelet activation. The interaction of 14-3-3 with GPIb-IX also plays a critical role in enabling the platelet response to low concentrations of thrombin through cooperative signaling mediated by protease-activated receptors and GPIb-IX. The various functions of 14-3-3 in platelets suggest that it is a possible target for the treatment of thrombosis and inflammation.


Asunto(s)
Proteínas 14-3-3/metabolismo , Plaquetas/metabolismo , Activación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Transducción de Señal , Animales , Coagulación Sanguínea , Plaquetas/citología , Humanos , Fosforilación , Unión Proteica , Factor de von Willebrand/metabolismo
16.
TH Open ; 2(3): e338-e345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31080944

RESUMEN

von Willebrand factor (VWF) is a multimeric protein composed of monomeric subunits (~280 kD) linked by disulfide bonds. During hemostasis and thrombosis, ultralarge (UL) VWF (ULVWF) multimers initiate platelet adhesion. In vitro, human C3 binds to ULVWF multimeric strings secreted by and anchored to human endothelial cell to promote the assembly and activation of C3 convertase (C3bBb) and C5 convertase (C3bBbC3b) of the alternative complement pathway (AP). The purified and soluble C3 avidly binds to recombinant human VWF A1A2A3, as well as the recombinant isolated human VWF A3 domain. Notably, the binding of soluble human ULVWF multimers to purified human C3 was blocked by addition of a monovalent Fab fragment antibody to the VWF A3 domain. We conclude that the A3 domain in VWF/ULVWF contains a docking site for C3. In contrast, purified human C4, an essential component of the classical and lectin complement pathways, binds to soluble, isolated A1, but not to ULVWF strings secreted by and anchored to endothelial cells. Our findings should facilitate the design of new therapeutic agents to suppress the initiation of the AP on ULVWF multimeric strings during thrombotic and inflammatory disorders.

17.
Int J Biomed Imaging ; 2017: 8318906, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234351

RESUMEN

Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.

18.
Blood ; 130(14): 1661-1670, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28729433

RESUMEN

Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.


Asunto(s)
Coagulación Sanguínea , Factor VIII/metabolismo , Factor VIIa/metabolismo , Factor Xa/metabolismo , Tromboplastina/metabolismo , Factor VIIIa/metabolismo , Humanos , Trombina/metabolismo
19.
Blood ; 130(4): 542-553, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28572286

RESUMEN

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.


Asunto(s)
Microbioma Gastrointestinal , Hígado/metabolismo , Transducción de Señal , Trombosis/metabolismo , Receptor Toll-Like 2/metabolismo , Factor de von Willebrand/biosíntesis , Animales , Plaquetas/metabolismo , Plaquetas/patología , Vida Libre de Gérmenes , Hígado/patología , Ratones , Ratones Noqueados , Agregación Plaquetaria/genética , Trombosis/genética , Trombosis/patología , Receptor Toll-Like 2/genética , Factor de von Willebrand/genética
20.
Nat Commun ; 8: 15838, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643773

RESUMEN

Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.


Asunto(s)
Plaquetas/enzimología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Plaquetas/citología , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/enzimología , Femenino , Humanos , Megacariocitos/citología , Megacariocitos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...