Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38248666

RESUMEN

Mass spectrometry-based chemical proteomic approaches using limited proteolysis have become a powerful tool for the identification and analysis of the interactions between a small molecule (SM) and its protein target(s). Gracilioether A (GeA) is a polyketide isolated from a marine sponge, for which we aimed to trace the interactome using this strategy. DARTS (Drug Affinity Responsive Target Stability) and t-LiP-MS (targeted-Limited Proteolysis-Mass Spectrometry) represented the main techniques used in this study. DARTS was applied on HeLa cell lysate for the identification of the GeA target proteins, and t-LiP-MS was employed to investigate the protein's regions involved in the binding with GeA. The results were complemented through the use of binding studies using Surface Plasmon Resonance (SPR) and in silico molecular docking experiments. Ubiquitin carboxyl-terminal hydrolase 5 (USP5) was identified as a promising target of GeA, and the interaction profile of the USP5-GeA complex was explained. USP5 is an enzyme involved in the pathway of protein metabolism through the disassembly of the polyubiquitin chains on degraded proteins into ubiquitin monomers. This activity is connected to different cellular functions concerning the maintenance of chromatin structure and receptors and the degradation of abnormal proteins and cancerogenic progression. On this basis, this structural information opens the way to following studies focused on the definition of the biological potential of Gracilioether A and the rational development of novel USP5 inhibitors based on a new structural skeleton.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Policétidos , Proteómica , Humanos , Células HeLa , Simulación del Acoplamiento Molecular , Hidrolasas , Ubiquitinas
2.
Bioorg Chem ; 138: 106620, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37229937

RESUMEN

In recent years, thiadiazolopyrimidine derivatives have been acknowledged for their striking poly-pharmacological framework, thus representing an interesting scaffold for the development of new therapeutic candidates. This paper examines the synthesis and the interactome characterization of a novel bioactive thiadiazolopyrimidone (compound 1), endowed with cytotoxic activity on HeLa cancer cells. In detail, starting from a small set of synthesized thiadiazolopyrimidones, a multi-disciplinary strategy has been carried out on the most bioactive one to disclose its potential biological targets by functional proteomics, using a label-free mass spectrometry based platform coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. The identification of Annexin A6 (ANXA6) as compound 1 most reliable cellular partner paved the way to deepen the protein-ligand interaction through bio-orthogonal approaches and to prove compound 1 action on migration and invasion processes governed by ANXA6 modulation. The identification of compund 1 as the first ANXA6 protein modulator represents a relevant tool to further explore the biological role of ANXA6 in cancer, as well as to develop novel anticancer candidates.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteómica , Antineoplásicos/farmacología , Proteolisis
3.
Eur J Med Chem ; 247: 115018, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36577218

RESUMEN

Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 µM and IC50 = 0.14 ± 0.03 µM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.


Asunto(s)
Factores de Transcripción , Humanos , Línea Celular , Simulación del Acoplamiento Molecular , Dominios Proteicos , Factores de Transcripción/metabolismo , Triazoles
4.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744994

RESUMEN

The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.


Asunto(s)
Epóxido Hidrolasas , Quinazolinonas , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos , Epóxido Hidrolasas/metabolismo , Receptores de Droga , Reproducibilidad de los Resultados , Solubilidad
5.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163936

RESUMEN

The multidomain BAG3 protein is a member of the BAG (Bcl-2-associated athanogene) family of co-chaperones, involved in a wide range of protein-protein interactions crucial for many key cellular pathways, including autophagy, cytoskeletal dynamics, and apoptosis. Basal expression of BAG3 is elevated in several tumor cell lines, where it promotes cell survival signaling and apoptosis resistance through the interaction with many protein partners. In addition, its role as a key player of several hallmarks of cancer, such as metastasis, angiogenesis, autophagy activation, and apoptosis inhibition, has been established. Due to its involvement in malignant transformation, BAG3 has emerged as a potential and effective biological target to control multiple cancer-related signaling pathways. Recently, by using a multidisciplinary approach we reported the first synthetic BAG3 modulator interfering with its BAG domain (BD), based on a 2,4-thiazolidinedione scaffold and endowed with significant anti-proliferative activity. Here, a further in silico-driven selection of a 2,4-thiazolidinedione-based compound was performed. Thanks to a straightforward synthesis, relevant binding affinity for the BAG3BD domain, and attractive biological activities, this novel generation of compounds is of great interest for the development of further BAG3 binders, as well as for the elucidation of the biological roles of this protein in tumors. Specifically, we found compound 6 as a new BAG3 modulator with a relevant antiproliferative effect on two different cancer cell lines (IC50: A375 = 19.36 µM; HeLa = 18.67 µM).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Tiazolidinedionas/farmacología , Antineoplásicos/química , Apoptosis , Autofagia , Proliferación Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Tiazolidinedionas/química , Células Tumorales Cultivadas
6.
Front Chem ; 9: 676631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046398

RESUMEN

We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.

7.
Bioorg Med Chem Lett ; 30(20): 127489, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32784088

RESUMEN

Twenty novel 1,2,3-triazole noscapine derivatives were synthesized starting from noscapine by consecutive N-demethylation, reduction of lactone ring, N-propargylation and Huisgen 1,3-dipolar cycloaddition reaction. In order to select the most promising molecules to subject to further biophysical and biological evaluation, a molecular docking analysis round was performed using noscapine as reference compound. The molecules featuring docking predicted binding affinity better than that of noscapine were then subjected to MTT assay against MCF7 cell line. The obtained results disclosed that all the selected triazole derivatives exhibited a remarkably lower cell viability compared to noscapine in the range of 20 µM in 48 h. In an attempt to correlate the biological activity with the ability to bind tubulin, the surface plasmon resonance (SPR) assay was employed. Compounds 8a, 8h, 9c, 9f and 9j were able to bind tubulin with affinity constant values in the nanomolar range and higher if compared to noscapine. Integrating computational predictions and experimental evaluation, two promising compounds (8h and 9c) were identified, whose relevant cytotoxicity was supposed to be correlated with tubulin binding affinity. These findings shed lights onto structural modifications of noscapine toward the identification of more potent cytotoxic agents targeting tubulin.


Asunto(s)
Descubrimiento de Drogas , Noscapina/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Células MCF-7 , Estructura Molecular , Noscapina/síntesis química , Noscapina/química , Relación Estructura-Actividad , Termodinámica , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
8.
ChemMedChem ; 15(6): 481-489, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32022480

RESUMEN

Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.


Asunto(s)
Antiinflamatorios/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Prostaglandina-E Sintasas/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Células A549 , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Prostaglandina-E Sintasas/metabolismo , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
9.
J Chem Inf Model ; 59(11): 4678-4690, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31593460

RESUMEN

Structure-based virtual screening is highly used in the early stages of drug discovery to identify new putative lead compounds for a given target. However, when a small molecule elicits a biological effect, but its target is unknown, or the side effects it causes arise from its undesired interaction with unknown counterparts, the identification of its interacting targets represents an indispensable task. The computational procedure named inverse virtual screening, which relies on docking a molecule (or a small set of compounds) against panels of target proteins to select the most promising complexes, could be useful to overcome these issues. Panels can contain thousands of proteins, and they must be correctly prepared to assure the best docking performance. Therefore, the preparation of panels of proteins collected in the Protein Data Bank ( www.rcsb.org ), if manually performed, may be costly in terms of time and efforts, and this can limit the applicability of this approach in high-throughput virtual screening workflows. We here show an automated workflow to speed up panel preparation and development, and to test its performance, this protocol was initially applied to a panel of 628 viral proteins and, afterward, to a panel of transferase proteins (2789 entries) to perform a large inverse virtual screening study, testing a small set of compounds synthesized in our laboratory. Tankyrase 2 (PARP 5b) was selected as their preferred target of interaction, and the predicted binding was validated by means of surface plasmon resonance experiments. This protocol is useful for the rapid identification of the interacting target for a bioactive compound; accordingly, it facilitates the re-evaluation of the pharmacological activity of known active compounds, addressing the repurposing and the polypharmacology concepts.


Asunto(s)
Descubrimiento de Drogas , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Bases de Datos de Proteínas , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos , Unión Proteica , Proteínas/química , Proteínas Virales/química , Proteínas Virales/metabolismo , Flujo de Trabajo
10.
Bioorg Med Chem ; 26(14): 3953-3957, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29934219

RESUMEN

The natural product magnolol (1) and a selection of its bioinspired derivatives 2-5, were investigated by Inverse Virtual Screening in order to identify putative biological targets from a panel of 308 proteins involved in cancer processes. By this in silico analysis we selected tankyrase-2 (TNKS2), casein kinase 2 (CK2) and bromodomain 9 (Brd9) as potential targets for experimental evaluations. The Surface Plasmon Resonance assay revealed that 3-5 present a good affinity for tankyrase-2, and, in particular, 3 showed an antiproliferative activity on A549 cells higher than the well-known tankyrase-2 inhibitor XAV939 used as reference compound.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Tanquirasas/antagonistas & inhibidores , Algoritmos , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lignanos/síntesis química , Lignanos/química , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Tanquirasas/metabolismo , Termodinámica , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...